Skip to main content
Log in

A microtomographic system for the nondestructive evaluation of bone architecture

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript


Microtomography (micro-computed-tomography, μ-CT) is a method to image and quantify trabecular bone. It has the capability to address the role of trabecular architecture on the mechanical properties of bone and to study trabecular bone remodeling. The system described in this work is based on a compact fan-beam type tomograph that can work in spiral scanning or multislice mode. An X-ray tube with a microfocus is used as a source, a CCD-array as a detector. Samples with diameters from a few millimeters to a maximum of 14 mm can be measured, typically, bone biopsies with a diameter of 8 mm and a length of approximately 10 mm are measured. Spatial resolution is 28 μm. Usually the volume of interest contains 4×4×4 mm3 and is represented in 14×14×14 μm3 voxels. 3D stereological indices are extracted according to the standard definitions used in histomorphometry. Triangular surface representation is effected with an extended marching cube algorithm and forms a convenient basis for finite element analysis. Microtomographic measurements may be employed to “calibrate” lower-dose, lower-resolution imagesin vivo as well as to nondestructively assess unprocessed surgical bone biopsy specimens. These specimens remain intact for mechanical or histological testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Consensus Development Conference (1993) Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  2. Parfitt AM (1983) The stereologic basis of bone histomorphometry. Theory of quantitative microscopy and reconstruction of the third dimension. In: Recker R (ed) Bone histomorphometry. Techniques and Interpretation. CRC Press, Boca Raton, pp 53–87

    Google Scholar 

  3. Vogel M, Hahn M, Pompesius-Kempa M, Delling G (1989) Trabecular microarchitecture of the human spine. In: HG Willert, FHW Heuck (eds) Neuere Ergebnisse in der Osteologie, vol 4. Springer Verlag Heidelberg, pp 449–455

  4. Mosekilde Li (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner 10:12–34

    Article  Google Scholar 

  5. Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  6. Odgaard A, Andersen K, Ullerup R, Frich LH, Melsen F (1994) Three-dimensional reconstruction of entire vertebral bodies. Bone 15:335–342

    Article  PubMed  CAS  Google Scholar 

  7. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1994) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Google Scholar 

  8. Bonse U, Busch F, Günnewig O, Beckmann F, Pahl R, Delling G, Hahn M, Graeff W (1994) 3D computed X-ray tomography of human cancellous bone at 8-μm spatial and 10−4 energy resolution. Bone Miner 25:25–38

    Article  PubMed  CAS  Google Scholar 

  9. Kinney JH, Lane NE, Haupt DL (1995) In vivo, 3D-microscopy of trabecular bone. J Bone Miner Res 10:264–269

    PubMed  CAS  Google Scholar 

  10. Müller R, Hildebrand T, Rüegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39: 145–164

    Article  PubMed  Google Scholar 

  11. DeHoff RT, Aigeltinger EH, Craig KR (1972) Experimental determination of the topological properties of 3D-microstructures. J Microscopy 95:69

    Google Scholar 

  12. Durand EP, Rüegsegger P (1992) High-contrast resolution of CT images for bone structure analysis. Med Phys 19:569–573

    Article  PubMed  CAS  Google Scholar 

  13. Glover GH, Eisner RL (1979) Theoretical resolution of computed tomography systems. J Comput Assist Tomogr 3:85–108

    Article  PubMed  CAS  Google Scholar 

  14. Joseph PM, Spital RD, Stockham CD (1980) The effects of sampling on CT images. Comp Tomogr 4:189–206

    Article  CAS  Google Scholar 

  15. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21: 163–169

    Google Scholar 

  16. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res, 2:595–610

    Article  PubMed  CAS  Google Scholar 

  17. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microscopy 101:153–168

    CAS  Google Scholar 

  18. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomechanics 27:375–389

    Article  CAS  Google Scholar 

  19. Müller R, Rüegsegger P (1994) Morphological validation of the 3D structure of non-invasive bone biopsies. Abstracts 10th Int. Workshop on Bone Densitometry. Bone Miner 25:S8

    Article  Google Scholar 

  20. Müller R, Koller B, Hildebrand T, Gionolini S, Rüegsegger P (1995) Resolution-dependency of microstructural properties of cancellous bone based on three-dimensional μ-tomography. In: Pedotti R, Rabischong P (eds) Abstracts 3rd European Conference on Engineering and Medicine, 1995, vol 112

  21. Engelke K, Graeff W, Meiss L, Hahn M, Delling G (1993) High spatial resolution imaging of bone using computed microtomography: comparison with microradiography and undecalcified histologic sections. J Invest Radiol 28:341–349

    Article  CAS  Google Scholar 

  22. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomechanics 24:825–839

    Article  CAS  Google Scholar 

  23. Van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomechanics 28:69–81

    Article  Google Scholar 

  24. Müller R, Rüegsegger P (1995) Three-dimensional finite element modeling of non-invasively assessed trabecular bone structures. Med Eng Phys 17:126–133

    Article  PubMed  Google Scholar 

  25. Dempster DW, Ferguson-Pell MW, Mellish RWE, Cochran GVB, Xie F, Fey C, Horbert W, Parisien M, Lindsay R (1993) Relationship between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporosis Int 3:90–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüegsegger, P., Koller, B. & Müller, R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58, 24–29 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key words