Skip to main content
Log in

Structural changes in oocyte nucleoli ofXenopus laevis during oogenesis and meiotic maturation

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II–III oocytes and within the nucleoli of relatively quiescent stage VI oocytes ofXenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II–III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II–III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4′,6-diamidino-2-phenyl-indole showed condensed DNA within nucleolar FCs of both stage II–III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azum-Gélade M-C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gas N (1994) Cell cycle redistribution of U3 snRNA and fibrillarin. Presence in the cytoplasmic nucleolus remnant and in the prenucleolar bodies at telophase. J Cell Sci 107:463–475

    PubMed  Google Scholar 

  • Bauer DW, Murphy C, Wu Z, Wu CH, Gall JG (1994) In vitro assembly of coiled bodies inXenopus egg extract. Mol Biol Cell 5:633–644

    PubMed  CAS  Google Scholar 

  • Belenguer P, Caizergues-Ferrer M, Labbe J, Doree M, Amalric F (1990) Mitosis-specific phosphorylation of nucleolin by p34cdc2 protein kinase. Mol Cell Biol 10:3607–3618

    PubMed  CAS  Google Scholar 

  • Bell P, Dabauvalle M, Scheer U (1992) In vitro assembly of prenucleolar bodies inXenopus egg extract. J Cell Biol 118:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Biggiogera M, Kaufmann SH, Shaper JH, Gas N, Amalric F, Fakan S (1991) Distribution of nucleolar proteins B23 and nucleolin during mouse spermatogenesis. Chromosoma 100: 162–172

    Article  PubMed  CAS  Google Scholar 

  • Brown DD (1966) The nucleolus and synthesis of ribosomal RNA during oogenesis and embryogenesis ofXenopus laevis. Natl Cancer Inst Monogr 23:297–309

    PubMed  CAS  Google Scholar 

  • Brown DD, Littna E (1964) Variations in the synthesis of stable RNA's during oogenesis and development ofXenopus laevis. J Mol Biol 8:688–695

    Article  CAS  PubMed  Google Scholar 

  • Brown DD, Weber CS (1968) Gene linkage by RNA-DNA hybridization. II. Arrangement of the redundant gene sequences for 28S and 18S ribosomal RNA. J Mol Biol 34:681–697

    Article  PubMed  CAS  Google Scholar 

  • Busch H, Smetana K (1970) The nucleolus. Academic Press, New York London

    Google Scholar 

  • Callan HG (1986) Lampbrush chromosomes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Callan HG, Gall JG, Berg CA (1987) The lampbrush chromosomes ofXenopus laevis: preparation, identification, and distribution of 5S DNA sequences. Chromosoma 95:236–250

    Article  PubMed  CAS  Google Scholar 

  • Cerdido A, Medina FJ (1995) Subnucleolar location of fibrillarin and variation in its levels during the cell cycle and during differentiation of plant cells. Chromosoma 103:635–634

    Google Scholar 

  • DiMario PJ, Mahowald AP (1985) Female sterile (1) yolkless: a recessive female sterile mutation inDrosophila melanogaster with depressed numbers of coated pits and coated vesicles within the developing oocytes. J Cell Biol 105:199–206

    Article  Google Scholar 

  • Dumont JN (1972) Oogenesis inXenopus laevis (Daudin). J Morphol 136:153–180

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Weisenberger D, Scheer U (1991) Assigning functions to nucleolar structures. Chromosoma 101:133–140

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Kleinschmidt JA, Spring H, Krohne G, Grund C, Trendelenburg MF, Stoehr M, Scheer U (1981) A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli ofXenopus laevis. J Cell Biol 90:289–299

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Murphy C, Callan HG, Wu Z (1991) Lampbrush chromosomes. Methods Cell Biol 36:149–166

    Article  PubMed  CAS  Google Scholar 

  • Hay ED (1968) Structure and function of the nucleolus in developing cells. In: Dalton AT, Haguenau F (eds) The nucleus. Academic Press, New York, pp 1–79

    Google Scholar 

  • Heald R, McKeon F (1990) Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61:579–589

    Article  PubMed  CAS  Google Scholar 

  • Heine MA, Rankin ML, DiMario PJ (1993) The gly/arg-rich (GAR) domain ofXenopus nucleolin facilitates in vitro nucleic acid binding and in vivo nucleolar localization. Mol Biol Cell 4:1189–1204

    PubMed  CAS  Google Scholar 

  • Hobson BM, Townsend BG (1964) The anaesthetic action of diethyl ether, ethyl carbomate and tricaine methanesulfonate up-onXenopus laevis. In: Graham-Jones O (ed) Small animal anaesthesia, Pergamon Press, London, p. 47

    Google Scholar 

  • Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  Google Scholar 

  • Jiménez-García LF, Segura-Valdez M de L, Ochs RL, Rothblum LI, Hanmnan R, Spector DL (1994) Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol Biol Cell 5:955–966

    PubMed  Google Scholar 

  • Kass S, Tyc K, Steitz JA, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908

    Article  PubMed  CAS  Google Scholar 

  • Lourim D, Krohne G (1993) Membrane-associated lamins inXenopus egg extracts: identification of two vesicle populations. J Cell Biol 123:501–512

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC (1972) The nucleolus and its genes in amphibian oogenesis. Biol Rev 47:177–210

    PubMed  CAS  Google Scholar 

  • Masui Y, Clarke HJ (1979) Oocytge maturation. Int Rev Cytol 57:185–282

    PubMed  CAS  Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 35:897–933

    Article  Google Scholar 

  • Meßmer B, Dreyer C (1993) Requirements for nuclear translocation and nucleolar accumulation of nucleolin ofXenopus laevis. Eur J Cell Biol 61:369–382

    PubMed  Google Scholar 

  • Miller OL (1966) Structure and composition of peripheral nucleoli of salamander oocytes. Natl Cancer Inst Monogr 23:53–66

    PubMed  Google Scholar 

  • Mougey EB, Pape LK, Sollner-Webb B (1993a) A U3 small nuclear ribonucleoprotein-requiring processing event in the 5′-external transcribed spacer ofXenopus precursor rRNA. Mol Cell Biol 13:5990–5998

    PubMed  CAS  Google Scholar 

  • Mougey EB, O'Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993b) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    PubMed  CAS  Google Scholar 

  • Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  PubMed  CAS  Google Scholar 

  • Ochs R, Lischwe M, O'Leary P, Busch H (1983) Localization of nucleolar phosphoproteins B23 and C23 during mitosis. Exp Cell Res 146:139–149

    Article  PubMed  CAS  Google Scholar 

  • Ochs RL, Lischwe MA, Spohn WH, Busch H (1985) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–134

    PubMed  CAS  Google Scholar 

  • Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA (1990a) Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60:791–801

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA (1990b) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61:591–602

    Article  PubMed  CAS  Google Scholar 

  • Reimer G, Pollard KM, Penning CA, Ochs RL, Lischwe MA, Busch H, Tan EM (1987a) Monoclonal autoantibody from a (New Zealand black X New Zealand white) F1 mouse and some human scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particles. Arthritis Rheum 30:793–800

    PubMed  CAS  Google Scholar 

  • Reimer G, Raska I, Tan EM, Scheer U (1987b) Human autoantibodies: probes for nucleolus structure and function. Virchows Arch [B] 54:131–143

    CAS  Google Scholar 

  • Scheer U, Dabauvalle M (1985) Functional organization of the amphibian oocyte nucleus. In: Browder LW (ed) Developmental biology a comprehensive synthesis, vol 1. Plenum Press, New York and London, pp 385–430

    Google Scholar 

  • Scheer U, Rose KM, (1984) Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Trendelenburg MF, Franke WW (1976) Regulation of transcription of genes of ribosomal RNA during amphibian oogenesis. J Cell Biol 69:465–489

    Article  PubMed  CAS  Google Scholar 

  • Smetana K, Busch H (1974) The nucleolus and nucleolar DNA. In: Busch H (ed) The cell nucleus, vol 1. Academic Press, New York and London, pp 73–147

    Google Scholar 

  • Thiébaud CH (1979) The intra-nucleolar localization of amplified rDNA inXenopus laevis oocytes. Chromosoma 73:29–36

    Article  PubMed  Google Scholar 

  • Thiry M (1992) New data concerning the functional organization of the mammalian cell nucleolus: detection of RNA and rRNA by in situ molecular immunocytochemistry. Nucleic Acids Res 20:6195–6200

    PubMed  CAS  Google Scholar 

  • Thiry M (1993) Ultrastructural distribution of DNA, and RNA within the nucleolus of human Sertoli cells as seen by molecular immunochemistry. J Cell Sci 105:33–39

    PubMed  CAS  Google Scholar 

  • Thiry M, Thiry-Blaise L (1989) In situ hybridization at the electron microscope level: an improved method for precise localization of ribosomal DNA and RNA. Eur J Cell Biol 50:235–243

    PubMed  CAS  Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA, Jared DW, Dumont JN, Sega MW (1973) Protein incorporation by isolated amphibian oocytes: III. Optimum incubation conditions. J Exp Zool 184:321–333

    Article  PubMed  CAS  Google Scholar 

  • Wasserman WJ, Smith LD (1978) Oocyte maturation: non-mammalian vertebrates. In: Jones RE (ed) The vertebrate ovary. Plenum, New York, pp 443–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. DiMario.

Additional information

Edited by: U. Scheer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S.B., Terry, C.D., Wells, D.A. et al. Structural changes in oocyte nucleoli ofXenopus laevis during oogenesis and meiotic maturation. Chromosoma 105, 111–121 (1996). https://doi.org/10.1007/BF02509521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509521

Keywords

Navigation