Functional Analysis and Its Applications

, Volume 30, Issue 3, pp 184–194 | Cite as

Fast variation of the magnetic field in a charged perfect gas at large Reynolds numbers

  • V. P. Maslov
Article
  • 36 Downloads

Keywords

Initial Data Asymptotic Solution Large Reynolds Number Magnetic Reynolds Number Oscillatory Part 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Maslov and G. A. Omel'yanov, “Single-phase asymptotics for the equations of magnetohydro-dynamics for large Reynolds numbers,” Sib. Mat. Zh.,29, No. 5, 172–180 (1988).MATHMathSciNetGoogle Scholar
  2. 2.
    V. P. Maslov and G. A. Omel'yanov, “The dynamo problem for large hydrodynamic and magnetic Reynolds numbers,” Russian J. Math. Phys.,4, No. 1, 75–86 (1996).MATHMathSciNetGoogle Scholar
  3. 3.
    A. I. Shafarevich, “Magnetic field behavior in a conducting fluid with rapidly varying velocity field,” Dokl. RAN (to appear).Google Scholar
  4. 4.
    V. P. Maslov, “Improper character of the ideal charged gas equations and vortex turbulence,” in: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Proceedings of the International Workshop (V. G. Bar'yakhtar et al., eds.), Vol. II, Kiev, pp. 692–717.Google Scholar
  5. 5.
    Ya. B. Zel'dovich, A. A. Ruzmaikin, S. A. Molchanov, and D. D. Sokolov, “Kinematic dynamo problem in a linear velocity field,” J. Fluid Mech.,144, 1–11 (1984).MATHCrossRefGoogle Scholar
  6. 6.
    A. M. Sovard and S. Childress, “Dynamo action at large magnetic Reynolds numbers in spatially periodic flow with mean motion,” in: Topological Fluid Mech., Proc. of IUTAM Symposium (H. K. Moffat and A. Tsinober, eds.), Cambridge, 1989.Google Scholar
  7. 7.
    A. Gailitis, “The helical MHD dynamo,” in: Topological Fluid Mech., Proc of IUTAM Symposium (H. K. Moffat and A. Tsinober, eds.), Cambridge, 1989.Google Scholar
  8. 8.
    K.-H. Rädler and N. Seehafer, “Relations between helicities in mean-field dynamo models,” in: Topological Fluid Mech., Proc. of IUTAM Symposium (H. K. Moffat and A. Tsinober, eds.), Cambridge, 1989.Google Scholar
  9. 9.
    Y. L. Ho and S. C. Prager, “Boundary effects on the MHD dynamo in laboratory plasmas,” in: Topological Fluid Mech., Proc. of IUTAM Symposium (H. K. Moffat and A. Tsinober, eds.), Cambridge, 1989.Google Scholar
  10. 10.
    S. Yu. Dobrokhotov and V. Martinez Olive, “Localized asymptotic solutions of the magnetic dynamo equation in ABC-fields,” Mat. Zametki,54, No. 4, 45–68 (1993).MATHMathSciNetGoogle Scholar
  11. 11.
    V. P. Maslov and G. A. Omel'yanov, “Fluctuation-generated tokamak pinch instabilities,” Russian J. Math. Phys.,2, No. 4, 463–485 (1994).MATHMathSciNetGoogle Scholar
  12. 12.
    V. P. Maslov and G. A. Omel'yanov, “Nonlinear evolution of fluctuations,” Fizika Plazmy,21, No. 8 684–696 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. P. Maslov

There are no affiliations available

Personalised recommendations