Skip to main content
Log in

Stage-specific localization of the small heat shock protein Hsp27 during oogenesis inDrosophila melanogaster

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The developmental and heat shock-induced expression of the small heat shock protein Hsp27 was investigated by confocal microscopy of whole-mount immunostained preparations of ovarioles during oogenesis inDrosophila melanogaster. In unstressed flies, Hsp27 was mainly associated with germline nurse cells throughout egg development. A small group of somatic follicle cells also expressed Hsp27 specifically at stages 8 to 10 of oogenesis. Interestingly, this Hsp showed a different intracellular localization depending on the stages of egg chamber development. Thus Hsp27 was localized in the nucleus of nurse cells during the first stages of oogenesis (from germarium to stage 6) whereas it showed a perinuclear and cytoplasmic localization from stage 8. After a heat shock, Hsp27 accumulated in somatic follicle cells surrounding the egg chamber whereas the expression of this small Hsp did not seem to be enhanced in nurse cells. The stage-dependent pattern of intracellular localization of Hsp27 observed in nurse cells of unstressed flies was also observed following heat shock. At late stages of oogenesis, Hsp27 also showed a perinuclear distribution in follicle and nurse cells after heat stress. These observations suggest that different factors may modulate the expression and intracellular distribution of Hsp27. This modulation may be associated with the specific activities occurring in each particular cell type throughout oogenesis during both normal development and under heat shock conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio L, Schedl P (1984) Gene expression duringDrosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol 105:80–92

    Article  PubMed  CAS  Google Scholar 

  • Amin J, Mestril R, Voellmy R (1991) Genes forDrosophila small heat shock proteins are regulated differently by ecdysterone. Mol Cell Biol 11:5937–5944

    PubMed  CAS  Google Scholar 

  • Arrigo A-P (1980) Investigation of the function of the heat shock proteins inDrosophila melanogaster tissue culture cells. Mol Gen Genet 178:517–524

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 334–373

    Google Scholar 

  • Arrigo A-P, Pauli D (1988) Characterization of Hsp27 and three immunologically related polypeptides duringDrosophila development. Exp Cell Res 175:169–183

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Tanguay RM (1991) Expression of heat shock proteins during development inDrosophila. In: Hightower L, Nover L (eds). Heat shock and development. Springer-Verlag. Berlin Heidelberg New York, pp 106–119

    Google Scholar 

  • Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Beaulieu JF, Arrigo A-P, Tanguay RM (1989) Interaction ofDrosophila 27Kd heat shock protein with the nucleus of heatshocked and ecdysterone-stimulated cultured cells. J Cell Sci 92:29–36

    PubMed  Google Scholar 

  • Berger EM, Woodward MP (1983) Small heat shock proteins ofDrosophila may confer thermal tolerance. Exp Cell Res 147:437–442

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Meselson M (1985) Separate regulatory element for the heat inducible and ovarian expression of theDrosophila hsp26 gene. Cell 43:737–746

    Article  PubMed  CAS  Google Scholar 

  • Corces V, Holmgren R, Morimoto R, Meselson M (1980) Four heat shock proteins inDrosophila melanogaster encoded within a 12 kilobase region in chromosome subdivision 67B. Proc Natl Acad Sci USA 77:5390–5393

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, McCarthy BJ (1980) FourDrosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucleic Acids Res 8:4441–4457

    PubMed  CAS  Google Scholar 

  • Glaser RL, Lis JT (1990) Multiple, compensatory regulatory elements specify spermatocyte-specific expression of theDrosophila melanogaster HSP26 gene. Mol Cell Biol 10:131–137

    PubMed  CAS  Google Scholar 

  • Glaser RL, Wolfner MF, Lis JT (1986) Spatial and temporal pattern of HSP26 expression during normal development. EMBO J 5:747–754

    PubMed  CAS  Google Scholar 

  • Haass c, Klein U, Kloetzel PM (1990) Developmental expression ofDrosophila melanogaster small heat shock proteins. J Cell Sci 96:413–418

    PubMed  CAS  Google Scholar 

  • Hofman ES, Gerring SL, Corces VG (1987) The ovarian, ecdysterone and heat-shock-responsive promoters ofDrosophila melanogaster HSP27 gene react differently to perturbation of DNA sequence. Mol Cell Biol 7:973–981

    Google Scholar 

  • Ireland RC, Berger EM (1982) Synthesis of low molecular weight heat shock proteins stimulated by ecdysterone in a culturedDrosophila cell line. Proc Natl Acad Sci USA 79:855–859

    Article  PubMed  CAS  Google Scholar 

  • Ireland RC, Berger EM, Sirotkin K, Yund MA, Osterbur D, Fristrom J (1982) Ecdysterone induces the transcription of four heat-shock genes inDrosophila S3 cells and imaginal discs. Dev Biol 93:498–507

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Joynson DA, Gautsch JW, Sportsman JR, Elder JH (1984) Improved technique utilizing nonfat drymilk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal Techn Appl 1:3–8

    Article  Google Scholar 

  • King RC (1970) Ovarian development inDrosophila melanogaster. Academic Press, New York

    Google Scholar 

  • Kosako H, Gotoh Y, Nishida E (1994) Requirement for the MAP kinase kinase/MAP kinase cascade inXenopus oocyte maturation. EMBO J 13:2131–2138

    PubMed  CAS  Google Scholar 

  • Kurtz S, Rossi H, Petko L, Lindquist S (1986) An ancient developmental induction: heat-shock protein induced in sporulation and oogenesis. Science 231:1154–1157

    Article  PubMed  CAS  Google Scholar 

  • Lane ME, Kalderon D (1994) RNA localization along the antero-posterior axis of theDrosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev 8:2986–2995

    PubMed  CAS  Google Scholar 

  • Lasko P (1994) Molecular genetics of Drosophila oogenesis. R.G. Landes Company, Austin

    Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993a) Induction of Chinese hamster Hsp27 gene expression in mouse cells confers resistance to heat shock. Hsp27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993b) Molulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–2414

    PubMed  CAS  Google Scholar 

  • Margaritis LH, Kafatos FC, Petri WH (1980) The eggshell ofDrosophila melanogaster. Fine structure of the layers and regions of the wild type eggshell. J Cell Sci 43:1–35

    PubMed  CAS  Google Scholar 

  • Marin R, Valet J-P, Tanguay RM (1993) Hsp23 and Hsp26 exhibit distinct spatial and temporal patterns of constitutive expression inDrosophila adults. Dev Genet 14:69–77

    Article  PubMed  CAS  Google Scholar 

  • Marin R, Landry J, Tanguay RM (1996) Tissue-specific post-translational modification of the small heat shock proteins Hsp27 inDrosophila. Exp Cell Res 223:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mason PJ, Hall LMC, Gausz J (1984) The expression of heat shock genes during normal development ofDrosophila melanogaster. Mol Gen Genet 194:73–78

    Article  CAS  Google Scholar 

  • Mehlen P, Briolay J, Smith L, Diaz-Latoud C, Fabre N, Pauli D, Arrigo A-P (1993) Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of theDrosophila 27-kDa heat shock protein. Eur J Biochem 215:277–284

    Article  PubMed  CAS  Google Scholar 

  • Merck KB, Groenen PJ, Voorter CE, De HHWA, Horwitz J, Bloemendal H, De JWW (1993) Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  • Miron TK, Vancompernolle K, Vanderkerckhove J, Wilchek M, Geiger B (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114:255–261

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissières A, Georgopoulos C (eds) (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Pauli D, Tonka C-H, Tissières A, Arrigo A-P (1990) Tissue specific expression of heat shock protein Hsp27 duringDrosophila melanogaster development. J Cell Biol 111:817–828

    Article  PubMed  CAS  Google Scholar 

  • Petersen NS, Moeller G, Mitchell HK (1979) Genetic mapping of the coding regions for three heat shock proteins inDrosophila melanogaster. Genetics 92:891–902

    Google Scholar 

  • Riddihough G, Pelham HRB (1987) An ecdysone response element in theDrosophila HSP27 promoter. EMBO J 6:3729–3734

    PubMed  CAS  Google Scholar 

  • Rollet E, Best-Belpomme M (1986) Hsp26 and 27 are phosphorylated in response to heat and ecdysterone inDrosophila melanogaster cells. Biochem Biophys Res Commun 141:426–433

    Article  PubMed  CAS  Google Scholar 

  • Rollet E, Lavoie JN, Landry J, Tanguay RM (1992) Expression ofDrosophila's 27kDa heat shock protein into rodent cells confers thermal tolerance. Biochem Biophys Res Commun 185:116–120

    Article  PubMed  CAS  Google Scholar 

  • Rossi J, Lindquist S (1989) The intracellular localization of yeast heat shock protein 26 varies with metabolism. J Cell Biol 108:425–439

    Article  PubMed  CAS  Google Scholar 

  • Schüpbach T (1987) Germ line and soma cooperate during oogenesis to stablish the dorsoventral pattern of the egg shell and embryo inDrosophila melanogaster. Cell 49:699–707

    Article  PubMed  Google Scholar 

  • Sirotkin K, Davidson N (1982) Developmentally regulated transcription fromDrosophila melanogaster chromosomal site 67B. Dev Biol 89:196–210

    Article  PubMed  CAS  Google Scholar 

  • Southgate R, Mirault ME, Ayme A, Tissières A (1985) Organization, sequences, and induction of heat shock genes. In: Atkinson BG, Walden DB (eds) Changes in gene expression in response to environmental stress. Academic Press, New York, pp. 1–30

    Google Scholar 

  • Spradling A (1993) Developmental genetics of oogenesis. In: Bate M, Martinez-Arias A (eds)Drosophila development. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, pp 1–70

    Google Scholar 

  • Suter B, Steward R (1991) Requirement for phosphorylation and localization of the Bicaudal-D protein inDrosophila oocyte differentiation. Cell 67:917–926

    Article  PubMed  CAS  Google Scholar 

  • Tanguay RM, Wu Y, Khandjian EK (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Dev Genet 14:112–118

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf WE, Smiley S, Wong ML, Alberts BM (1992) Reorganization of the cytoskeleton duringDrosophila oogenesis: implications for axis specification and intercellular transport. Development 115:923–936

    PubMed  CAS  Google Scholar 

  • Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci USA 72:2626–2630

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Lengyel JA (1986) Ecdysteroid-regulated heat-shock gene expression duringDrosophila melanogaster development. Dev Biol 115:434–438

    Article  PubMed  CAS  Google Scholar 

  • Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ (1993) MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol 158:330–340

    Article  PubMed  CAS  Google Scholar 

  • Vincent M, Tanguay RM (1982) Different intracellular localization of heat shock and arsenite-induced proteins inDrosophila Kc cells. Possible relation with the phosphorylation and translocation of a major cytoskeletal protein. J Mol Biol 162:365–374

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset ofD. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32:1161–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Tanguay.

Additional information

Edited by: E.R. Schmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, R., Tanguay, R.M. Stage-specific localization of the small heat shock protein Hsp27 during oogenesis inDrosophila melanogaster . Chromosoma 105, 142–149 (1996). https://doi.org/10.1007/BF02509495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509495

Keywords

Navigation