Skip to main content

Advertisement

Log in

Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The size and the orientation of the bone salt (mineral) crystals in the cranial and caudal zones in the transverse midshaft section of the equine radius were investigated by small-angle X-ray scattering (SAXS). The results are interpreted as indicating that the crystals had an elongated shape with an average thickness of T=3.79±0.20 nm in the cranial region. Their orientation was predominantly in the longitudinal direction of the bone. There was no preferential orientation within the transverse plane. The distribution of tilt angles with respect to the longitudinal direction was determined directly from the SAXS data: the average angle was about 30° for the cranial region and 45° for the caudal region. Assuming that the needle-like crystals are parallel with the collagen fibrils, the angular distribution of the crystals is in good agreement with previous measurements of collagen orientation using circularly polarized light microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer GH (1867) Die Architectur der Spongiosa (Zehnter Beitrag zur Mechanik des menschlichen Knochengerüstes). Arch f Anat Physiol u wiss Med (Müller's) 615–628

  2. Wolff J (1870) Über die innere Architektur der Knochen und ihre Bedeutung für die Frage von Knochenwachstum. Virchow's Archiv 50:389–450

    Article  Google Scholar 

  3. Lanyon LE (1974) Experimental support for the trajectorial theory of bone structure. J Bone Joint Surg 56-B:160–166

    Google Scholar 

  4. Gebhardt W (1905) Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil. I. Der Bau der Havers'schen Lamellensysteme und seine funktionelle Bedeutung. Arch of Entwicklungsmechanik der Organismen 20:187–322

    Article  Google Scholar 

  5. Ascenzi A (1988) The micromechanics versus the macromechanics of cortical bone—a comprehensive presentation. J Biomed Eng 110:357–363

    CAS  Google Scholar 

  6. Ascenzi A, Bonucci E (1964) The ultimate tensile strength of single osteons. Acta Anat 44:160–183

    Google Scholar 

  7. Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386

    Article  PubMed  CAS  Google Scholar 

  8. Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–392

    Article  PubMed  CAS  Google Scholar 

  9. Ascenzi A, Bonucci E (1972) The shearing properties of single osteons. Anat Rec 217:499–510

    Article  Google Scholar 

  10. Ascenzi A, Bonucci E (1976) Relationship between ultrastructure and “Pin Test” in osteons. Clin Orthop 121:275–294

    PubMed  Google Scholar 

  11. Ascenzi A, Bonucci E, Bocciarelli DS (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    Article  PubMed  CAS  Google Scholar 

  12. Ascenzi A, Boyde A, Portigliatti Barbos M, Carando S (1987) Micro-biomechanics vs macro-biomechanics in cortical bone. A micromechanical investigation of femurs deformed by bending. J Biomechanics 20:1045–1053

    Article  CAS  Google Scholar 

  13. Vincentelli R, Evans FG (1971) Relations among mechanical properties, collagen fibres, and calcification in adult human cortical bone. J Biomechanics 4:193–201

    Article  CAS  Google Scholar 

  14. Evans FG, Vincentelli R (1974) Relations of the compressive properties of human cortical bone to histological structure and calcification. J Biomechanics 7:1–10

    Article  CAS  Google Scholar 

  15. Portigliatti Barbos M, Bianco P, Ascenzi A (1983) Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. Acta Anat 115:178–186

    Article  PubMed  CAS  Google Scholar 

  16. Portigliatti Barbos M, Bianco P, Ascenzi A, Boyde A (1984) Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the human femoral shaft with reference to its mechanical properties. Metab Bone Dis Rel Res 5:309–315

    Article  CAS  Google Scholar 

  17. Carando S, Portigliatti Barbos M, Ascenzi A, Boyde A (1989) Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. Bone 10: 139–142

    Article  PubMed  CAS  Google Scholar 

  18. Carando S, Portigliatti Barbos M, Ascenzi A, Riggs CM, Boyde A (1991) Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties. Bone 12:265–269

    Article  PubMed  CAS  Google Scholar 

  19. Boyde A, Bianco P, Portigliatti Barbos M, Ascenzi A (1984) Collagen orientation in compact bone. A new method for the determination of the proportion of collagen parallel to the plane of compact bone sections. Metab Bone Dis Rel Res 5:299–308

    Article  CAS  Google Scholar 

  20. Boyde A, Riggs CM (1990) The quantitative study of the orientation of collagen in compact bone slices. Bone 11:35–39

    Article  PubMed  CAS  Google Scholar 

  21. Turner AS, Mills EJ, Gabel AA (1975) In vivo measurements of bone strain in the horse. Am J Vet Res 36:1573–1579

    PubMed  CAS  Google Scholar 

  22. Rubin CT, Lanyon LE (1982) Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 101:187–211

    PubMed  CAS  Google Scholar 

  23. Biewener AA, Thomason J, Goodship AE, Lanyon LE (1983a) Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental models. J Biomechanics 16:565–576

    Article  CAS  Google Scholar 

  24. Biewener AA, Thomason J, Lanyon LE (1983b) Mechanics of locomotion and jumping in the forelimb of the horse (Equus): in vivo stress developed in the radius and metacarpus. J Zool 201:67–82

    Article  Google Scholar 

  25. Riggs CM, Lanyon LE, Boyde A (1993a) Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol 187:231–238

    PubMed  CAS  Google Scholar 

  26. Riggs CM, Vaughan LC, Evans GP, Lanyon LE, Boyde A (1993b) Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol 187:239–248

    PubMed  CAS  Google Scholar 

  27. Grynpas MD, Bonar LC, Glimcher MJ (1984) X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J Mater Sci 19:723–736

    Article  CAS  Google Scholar 

  28. Arsenault AL, Grynpas MD (1988) Crystals in calcified epiphyseal cartilage and cortical bone of the rat. Calcif Tissue Int 43:219–225

    PubMed  CAS  Google Scholar 

  29. Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters 206:262–266

    Article  PubMed  CAS  Google Scholar 

  30. Traub W, Arad T, Weiner S (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA 68:9822–9826

    Article  Google Scholar 

  31. Landis WJ, Song MJ, Leith A, McEwen L, McEwen B (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    Article  PubMed  CAS  Google Scholar 

  32. Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle x-ray scattering. Calcif Tissue Int 48: 407–413

    PubMed  CAS  Google Scholar 

  33. Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a cooperative study by SAXS. J Bone Miner Res 7(3):329–334

    PubMed  CAS  Google Scholar 

  34. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralisation after fluoride treatment in osteoporosis: a small-angle X-ray scattering study. J Bone Miner Res 9(10):1541–1549

    Article  PubMed  CAS  Google Scholar 

  35. Fratzl P (1994) Statistical model of the habit and arrangement of mineral crystals in the collagen of bone. J Stat Phys 77(2): 125–143

    Article  Google Scholar 

  36. Fratzl P, Langmayr F, Paris O (1993) Evaluation of 3D smallangle scattering from non-spherical particles in single crystals. J Appl Cryst 26:820–826

    Article  CAS  Google Scholar 

  37. Perret R, Ruland W (1969) Single and multiple x-ray small-angle scattering of carbon fibres. J Appl Cryst 2:209–218

    Article  CAS  Google Scholar 

  38. Matsushima N, Akiyama M, Terayama Y (1982) Quantitative analysis of the orientation of mineral in bone from small-angle x-ray scattering patterns. Jpn J Appl Phys 21(1):186–189

    Article  Google Scholar 

  39. Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order and disorder in collagen fibrils. Biophys J 68: 1661–1670

    Article  PubMed  CAS  Google Scholar 

  40. Seitsonen S (1968) Determination of orientation distributions in fibres and sheets. J Appl Cryst 1:82–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratzl, P., Schreiber, S. & Boyde, A. Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58, 341–346 (1996). https://doi.org/10.1007/BF02509383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509383

Key words

Navigation