Journal of Plant Research

, Volume 110, Issue 2, pp 195–207 | Cite as

Intraspecific sequence variation of chloroplast DNA inPedicularis chamissonis Steven (Scrophulariaceae) and geographic structuring of the Japanese “Alpine” plants

  • Noriyuki Fujii
  • Kunihiko Ueda
  • Yasuyuki Watano
  • Tatemi Shimizu


In order to clarify evolutionary patterns and processes of intraspecific diversification ofPedicularis chamissonis Steven, we analyzed intraspecific variation of the nucleotide sequences of non-coding regions of chloroplast DNA: the intergenic spacers betweentrnT (UGU) andtrnL (UAA) 5′exon,trnL (UAA) 3′exon andtrnF (GAA), andatpB andrbcL. In 24 populations ofP. chamissonis, 33 nucleotide substitutions and 12 insertions/deletions were inferred, and their genetic distances ranged from 0.001 to 0.014. Seventeen distinct cpDNA haplotypes could be recognized and each haplotype was found to be geographically structured. Two major clades (the Northern and Southern clades) were revealed in phylogenetic analyses of cpDNA haplotypes. The haplotypes of the Northern clade had a wider distribution area in the populations of Mts. lide of central Honshu in Japan, northward to Unalaska Island in the Aleutians. Relationships among most haplotypes were unresolved polytomies. On the other hand, the haplotypes of the Southern clade occurred from the populations of Mt. Gassan southwards to Mt. Arakawa of central Honshu. Within this clade, three subclades were clearly recognized. From these results, we concluded that the haplotypes of the Northern and Southern clades inP. chamissonis might have traveled down to Japanese Archipelago from the north in not a single glacial period.

Key words

Chloroplast DNA Intraspecific variation Molecular phylogeny Pedicularis chamissonis Phylogeography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J. andHasegawa, M. 1996. MOLPHY: Programs for Molecular Phylogenetics version 2.3b3. Institute of Statistical Mathematics, Tokyo.Google Scholar
  2. Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York.Google Scholar
  3. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. andSaunders, N.C. 1987. Intraspecific phytogeography: The mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst.18: 489–522.Google Scholar
  4. Doyle, J.J. andDickson, E.E. 1987. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon36: 715–722.CrossRefGoogle Scholar
  5. Fujii, N., Ueda, K., Watano, Y. andShimizu, T. 1995. Intraspecific sequence variation in chloroplast DNA ofPrimula cuneifolia Ledeb. J. Phytogeogr. & Taxon43: 15–24.Google Scholar
  6. Hara, H. 1948. A bibliographic enumeration of flowering plants indigenous to or long cultivated in Japan and its adjacent islands. Iwanami shoten, Tokyo.Google Scholar
  7. Hasegawa, M., Kishino, H. andYano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.22: 160–174.CrossRefPubMedGoogle Scholar
  8. Hultén, E. 1930.Pedicularis chamissonis.In E. Hultén, Flora of Kamchatka and the Adjacent Islands 4, Almqvist and Wiksells, Stockholm, pp 109–111.Google Scholar
  9. Kawano, S. 1971. Studies on the alpine flora of Hokkaido, Japan I. phytogeography. J. Coll. Lib. Arts, Toyama Univ. Nat. Sci.4: 13–96.Google Scholar
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.CrossRefPubMedGoogle Scholar
  11. Kita, Y., Ueda, K. andKadota, Y. 1995. Molecular phylogeny and evolution of the AsianAconitum subgenusAconitum (Ranunculaceae). J. Plant Res.108: 429–442.CrossRefGoogle Scholar
  12. Kitamura, S., Murata, G. andHori, M. 1958. Colored Illustrations of Herbaceous Plants of Japan vol. 1 (Sympetalae), rev. ed. Hoikusha, Osaka. (in Japanese)Google Scholar
  13. Koidzumi, G. 1919. Genetic and floristic phytogeography of thealpine flora of Japan. Bot. Mag. Tokyo33: 193–222. (in Japanese)Google Scholar
  14. Minato, M. andIjiri, S. 1976. The Japanese Archipelago. 3rd ed., Iwanamishoten, Tokyo. (in Japanese)Google Scholar
  15. O'Donnell, K. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycetaFusarium sambucinum (Gibberella pulicaris). Curr. Genet.22: 213–220.CrossRefPubMedGoogle Scholar
  16. Ohwi, J. 1978. Flora of Japan, rev. and enlarg. ed. Shibundo, Tokyo. (in Japanese)Google Scholar
  17. Orita, M., Iwahara, H., Kanazawa, H., Hayashi, K. andSekiya, T. 1989a. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA86: 2771–2774.CrossRefGoogle Scholar
  18. Orita, M., Suzuki, Y., Sekiya, T. andHayashi, K. 1989b. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics5: 874–879.CrossRefPubMedGoogle Scholar
  19. Shimizu, T. 1982. The new alpine flora of Japan in color vol. 1. Hoikusha, Osaka. (in Japanese)Google Scholar
  20. Soltis, D.E., Mayer, M.S., Soltis, P.S. andEdgerton, M. 1991. Chloroplast DNA variation inTellima grandiflora (Saxifragaceae). Amer. J. Bot.78: 1379–1390.CrossRefGoogle Scholar
  21. Soltis, D.E. andSoltis, P.S. andMilligan, B.G. 1992a. Intraspecific chloroplast DNA variation: Systematics and phylogenetic implication.In P.S. Soltis, D.E. Soltis and J.J. Doyle, eds., Molecular Systematics of Plants, Chapman and Hall, New York, pp. 117–150.Google Scholar
  22. Soltis, D.E., Soltis, P.S., Kuzoff, R.K. andTucker, T.L. 1992b. Geographic structuring of chloroplast DNA genotypes inTiarella trifoliata (Saxifragaceae). Pl. Syst. Evol.181: 203–216.CrossRefGoogle Scholar
  23. Soltis, D.E., Soltis, P.S., Ranker, T.A. andNess, B.D. 1989. Chloroplast DNA variation in a wild plant,Tolmiea menziesii. Genetics121: 819–826.Google Scholar
  24. Swofford, D.L. 1993. PAUP: Phylogenetic Analysis Using Parsimony version 3.1.1. The Illinois Natural History Survey, Champaign.Google Scholar
  25. Taberlet, P., Gielly, L., Pautou, G. andBouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Bio.17: 1105–1109.CrossRefGoogle Scholar
  26. Terachi, T. 1993. Structural alterations of chloroplast genome and their significance to the higher plant evolution. Bull. Inst. Natl. Land Util. Developm. Kyoto Sangyo Univ.14: 138–148.Google Scholar
  27. Thompson, J.D., Higgins, D.G. andGibson, T.J. 1996. Clustal W version 1.6. EMBL, Heidelberg.Google Scholar
  28. Toyokuni, H. 1981. A preliminary note on the floristic phytogeography of the alpine flora of Japan. J. Fac. Lib. Arts, Shinshu Univ. Nat. Sci.15: 81–96.Google Scholar
  29. Yamazaki, T. 1982. Nomenclatural changes and new taxa of some Scrophulariaceae plants in Japan. J. Jap. Bot.57: 212–215. (in Japanese with Latin description)Google Scholar
  30. Yamazaki, T. 1987. A new variety ofPedicularis chamissonis Steven. J. Jap. Bot.62: 54. (in Japanese with Latin description)Google Scholar
  31. Yamazaki, T. 1993.Pedicularis.In K. Iwatsuki, T. Yamazaki, D.E. Boufford and H. Ohba, eds., Flora of Japan, vol. 3a. Kodansha, Tokyo. pp. 364–371.Google Scholar
  32. Watano, Y., Imazu, M. andShimizu, T. 1995. Chloroplast DNA typing by PCR-SSCP in thePinus pumila-P. parviflora var.pentaphylla complex (Pinaceae). J. Plant Res.108: 493–499.CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1997

Authors and Affiliations

  • Noriyuki Fujii
    • 1
  • Kunihiko Ueda
    • 2
  • Yasuyuki Watano
    • 2
  • Tatemi Shimizu
    • 2
  1. 1.Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma, KanazawaJapan
  2. 2.Department of Biology, Faculty of ScienceKanazawa UniversityKakuma, KanazawaJapan

Personalised recommendations