Annals of the Institute of Statistical Mathematics

, Volume 57, Issue 3, pp 403–423

# Estimation in additive cox models by marginal integration

• Toshio Honda
Censoring

## Abstract

Assuming an additive model on the covariate effect in proportional hazards regression, we consider the estimation of the component functions. The estimator is based on the marginal integration method. Then we use a new kind of nonparametric estimator as the pilot estimator of the marginal integration. The pilot estimator is constructed by an analogy to the two-sample problems and by appealing to the principles of local partial likelihood and local linear fitting. We derive the asymptotic distribution of the marginal integration estimator of the component functions. The result of a simulation study is also given.

## Key words and phrases

Additive modeling censoring time failure time local linear fitting local partial likelihood marginal integration method two-sample estimator proportional hazards models

## Preview

Unable to display preview. Download preview PDF.

## References

1. Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993).Statistical Models Based on Counting Processes, Springer, New York.
2. Cox, D. R. (1972). Regression models and life tables (with discussion),Journal of the Royal Statistical Society Series B,34, 187–220.
3. Dabrowska, D. M. (1997). Smoothed Cox regression,The Annals of Statistics,25 1510–1540.
4. Fan, J., Gijbels, I. and King, M. (1997). Local likelihood and local partial likelihood in hazard regression,The Annals of Statistics,25, 1661–1690.
5. Fan, J., Härdle, W. and Mammen, E. (1998). Direct estimation of low-dimensional components in additive models,The Annals of Statistics,26, 943–971.
6. Gu, C. (2002).Smoothing Spline ANOVA Models, Springer, New York.
7. Hastie, T. J. and Tibshirani, R. J. (1990a). Exploring the nature of covariate effects in the proportional hazards models,Biometrics,46, 1005–1016.
8. Hastie, T. J. and Tibshirani, R. J. (1990b).Generalized Additive Models, Chapman and Hall, London.
9. Honda, T. (2004). Nonparametric regression in proportional hazards regression,Journal of the Japan Statistical Society,34, 1–17.
10. Huang, J. Z., Kooperberg, C., Stone, C. J. and Truong, Y. K. (2000). Functional ANOVA modeling for proportional hazards regression,The Annals of Statistics,28, 961–999.
11. Kalbfleisch, J. D. and Prentice, R. L. (2002),The Statistical Analysis of Failure Time Data, 2nd ed., Wiley, Hoboken, New Jersey.
12. Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995). TheL 2 rates of convergence for hazard regression,Scandinavian Journal of Statistics,22, 143–157.
13. Li, G. and Doss, H. (1995). An approach to nonparametric regression for life history data using local linear fitting,The Annals of Statistics,23, 787–823.
14. Linton, O. B. (1997). Efficient estimation of additive nonparametric regression models,Biometrika,84, 469–473.
15. Linton, O. B. (2000). Efficient estimation of generalized additive nonparametric regression models,Econometric Theory,16, 502–523.
16. Linton, O. B. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration,Biometrika,82, 93–100.
17. Linton, O. B., Nielsen, J. P. and van de Geer, S. (2003). Estimating multiplicative and additive hazard functions by kernel regression,The Annals of Statistics,31, 464–492.
18. Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions,The Annals of Statistics,27, 1443–1490.
19. Masry, E. (1996). Multivariate local polynomial regression for time series: Uniform strong convergence and rates,Journal of Time Series Analysis,17, 571–599.
20. Newey, W. K. (1994). Kernel estimation of partial means,Econometric Theory,10, 233–253.
21. Nielsen, J. P. and Linton, O. B. (1995). Kernel estimation in a nonparametric marker dependent hazard model,The Annals of Statistics,23, 1735–1748.
22. Nielsen, J. P., Linton, O. B. and Bickel, P. J. (1998). On a semiparametric survival model with flexible covariate effect,The Annals of Statistics,26, 215–241.
23. Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators,Journal of Multivariate Analysis,73, 166–179.
24. Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression,The Annals of Statistics,25, 186–211.
25. O'Sullivan, F. (1993). Nonparametric estimation in the Cox model,The Annals of Statistics,21, 124–145.
26. Pons, O. (2000). Nonparametric estimation in a varying-coefficient Cox model,Mathematical Methods of Statistics,9, 376–398.
27. Schimek, M. G. and Turlach, B. A. (2000). Additive and generalized additive models,Smoothing and Regression: Approaches, Computation, and Application (ed. M. G. Schimek), 277–327, Wiley, New York.Google Scholar
28. Sperlich, S., Tjøstheim, D. and Yang, L. (2002). Nonparametric estimation and testing of interaction in additive models,Econometric Theory,18, 197–251.
29. Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion).The Annals of Statistics,25, 1371–1470.
30. Tjøstheim, D. and Auestad, B. (1994). Nonparametric identification of nonlinear time series: Projections,Journal of the American Statistical Association,89, 1398–1409.