Skip to main content
Log in

On some electromagnetic phenomena in the tether magnetoplasma cloud

  • Published:
Il Nuovo Cimento C

Summary

The tethered satellite system (TSS) will be accompanied by a variety of electromagnetic phenomena. An independent interconnected formation, a «tethered magnetoplasma cloud» (TMC), moving in space along the orbit of TSS, at an altitude of about 300 km, will be created. This time-dependent cloud will be a very complicated inhomogeneous formation including electromagnetic oscillations and waves of different type. Some of these waves will be observed on the Earth's surface. Rarefiel regions of the magnetoplasma behind, and dense regions in front of the shuttle orbiter (SO) and the subsatellite (SS) will arise. The neutral nitrogen beam ejected by the thruster becomes an ion beam on the day-light part of the orbit. Its energy is much greater than the local thermal energy. Instabilities of different kind as well as diffusion and recombination effects are expected to accompany the interaction of these beams with the surrounding plasma. The electron beams will produce other types of instabilities. By the electrons precessing along the magnetic-field lines, a current (5·103V, 0.5 A) should be induced in the 20th km length conducting tether. It will be closed at the bottom of the ionosphere. This huge magnetic loop, so-called «phantom loop» (PL), should accompany the tether system along its orbit. The length of this «tether electromagnetic tail» (TEMT) is about 200 km, its magnetic moment will be about 1013 A·cm2. Alfvén waves and nonlinear effects of heating type may be produced by this loop along the magnetic-field lines. «Strings» of hot plasma may accompany the tether system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Belcastro, P. Veltri andM. Dobrovolny,Nuovo Cimento,5, 537 (1982).

    Google Scholar 

  2. Ya. L. Alpert, A. V. Gurevich andL. P. Pitaevskii:Space Physics with Artificial Satellites (Consultants Bureau, New York, N.Y., 1965).

    Google Scholar 

  3. A. V. Gurevich, L. P. Pitaevskii andV. V. Smirnova:Space Sci. Rev.,9, 805 (1969).

    Article  ADS  Google Scholar 

  4. N. Y. Budko:Ž. Ėksp. Teor. Fiz.,57, 686 (1969) (in Russian).

    Google Scholar 

  5. S. D. Hester andA. A. Sonin:AIAA J.,8, 1090 (1970);Phys. Fluids,13, 641 (1970).

    Article  ADS  Google Scholar 

  6. U. Samir andH. Jew:J. Geophys. Res.,77, 6819 (1972).

    ADS  Google Scholar 

  7. A. P. Dubovoi:Ž. Ėksp. Teor. Fiz.,63, 951 (1972) (in Russian).

    Google Scholar 

  8. A. R. Martin:Planet. Space Sci.,22, 121 (1974).

    Article  ADS  Google Scholar 

  9. I. A. Bogashcenko, A. V. Gurevich, R. A. Salimov andYu. L. Eidelman:Ž. Ėksp. Teor. Fiz. (in Russian),59, 1540 (1971).

    Google Scholar 

  10. Yu. M. Panchenko andL. P. Pitaevskii:Geomagn. Aeron.,4, 256 (1964) (in Russian)

    Google Scholar 

  11. P. J. Bowen, R. L. Boyd, C. L. Henderson andA. P. Willmore:Proc. R. Soc. London, Ser. A,281, 514 (1964).

    ADS  Google Scholar 

  12. U. Samir andA. P. Willmore:Planet. Space Sci.,14, 81 (1966).

    Article  Google Scholar 

  13. C. L. Henderson andU. Samir:Planet. Space Sci.,15, 1499 (1967).

    Article  ADS  Google Scholar 

  14. U. Samir andG. L. Wrenn:Planet. Space Sci.,20, 859 (1969).

    Google Scholar 

  15. V. V. Skvortsov andL. V. Nosachev:Kosm. Issled.,6, 228 (1968) (in Russian).

    Google Scholar 

  16. G. I. Grigor'ev:Geomagn. Aeron.,4, 183 (1964) (in Russian).

    Google Scholar 

  17. Ya. L. Alpert:Radio Wave Propagation and the Ionosphere, Vol. 1, 2 (Consultants Bureau, New York-London, 1973).

    Google Scholar 

  18. A. V. Gurevich:Ž. Ėksp. Teor., Fiz.,44, 1302 (1963) (in Russian).

    MathSciNet  Google Scholar 

  19. H. Feshbach andF. Villars:J. Geophys. Res.,68, 1303 (1963).

    MATH  ADS  Google Scholar 

  20. V. E. Golant:Ž. Éksp. Teor. Fiz.,30, 881 (1960) (in Russian).

    MATH  MathSciNet  Google Scholar 

  21. A. V. Gurevich andE. E. Tsedilina:Geomagn. Aeron.,6, 225 (1966);4, 648 (1967) (in Russian).

    Google Scholar 

  22. A. V. Gurevich andE. E. Tsedilina:Sov. Phys. Usp.,10, 214 (1967).

    Article  ADS  Google Scholar 

  23. A. B. Mikhailovskii:Theory of Plasma Instabilities, Vol. 1, 2 (Plenum Press, New York, N.Y., 1974).

    Google Scholar 

  24. Ya. L. Alpert:The Near-Earth and Interplanetary Space, Vol. 1, 2 (Cambridge University Press, Cambridge, 1983, second edition 1990):Space Plasma Physics, Vol. 1, 2 (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  25. V. P. Silin:Parametric Action of Powerful Radiation at a Plasma (Publ. House Nauka, Moscow, 1973) (in Russian).

    Google Scholar 

  26. D. F. Du Bois andM. V. Goldman:Phys. Rev.,164, 207 (1967).

    Article  ADS  Google Scholar 

  27. V. P. Silin:Ž. Ėksp. Teor. Fiz.,48, 1679 (1965) (in Russian).

    Google Scholar 

  28. R. C. Davidson:Methods in Nonlinear Theory (Academic Press, New York, San Francisco, London, 1972).

    Google Scholar 

  29. A. V. Gurevich:Nonlinear Phenomena in the Ionosphere, (Springer-Verlag, Berlin, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpert, Y.L. On some electromagnetic phenomena in the tether magnetoplasma cloud. Il Nuovo Cimento C 14, 501–522 (1991). https://doi.org/10.1007/BF02509201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509201

PACS 94.20

Navigation