Il Nuovo Cimento C

, Volume 14, Issue 4, pp 401–416 | Cite as

A study of the global distribution of sulfate aerosols with a 2D model including microphysics

  • M. Franceschini
  • G. Pitari
  • G. Visconti
Article

Summary

The global distribution of sulfate aerosols in the troposphere and lower stratosphere has been calculated using a two-dimensional model. The chemistry includes the main families (NO x , NO y , HO x ) plus the sulfur compounds, while the heterogeneous processes are modelled with a microphysics code which takes into account nucleation, condensation and coagulation. The results are compared with experimental data wherever available. A too low concentration of sulfuric acid is predicted by the model in the troposphere and this is explained by too large a flux of condensation nuclei and partly by the absence of sulfate production from methane sulfuric acid (MSA) in our scheme. Aerosol concentration and size distribution are comparable to observations; however the calculations show a more complex meridional structure than observed, while the size distribution is somewhat shifted toward smaller sizes. This fact is also attributed to the presence of a large number of nuclei and to the absence of any mechanism for evaporation of aerosol particles back to the core. We have also perturbed the anthropogenic fluxes of SO2, CS2 and the OCS ground mixing ratios to asses the sensitivity of the aerosol concentration: we have found very little changes in the aerosol distribution because H2SO4 chemistry is dominated by heterogeneous processes.

PACS 92.60

Meteorology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. J. Crutzen: inThe Major Biogeochemical Cycles and their Interactions, edited byB. Bolin andR. B. Cook (Wiley, 1983).Google Scholar
  2. [2]
    R. R. Dickerson, G. J. Huffmann, W. T. Luke, L. J. Nunnermacker, K. E. Pickering, A. C. D. Leslie, C. G. Lindsey, W. G. N. Slinn, T. J. Kelly, P. H. Daum, A. C. Delany, D. J. Greenberg, P. R. Zimmerman, J. F. Boatman, J. D. Ray andD. H. Stedman:Science,235, 460 (1987).ADSCrossRefGoogle Scholar
  3. [3]
    D. J. Hoffman andJ. M. Rosen:Science,208, 1368 (1980).ADSCrossRefGoogle Scholar
  4. [4]
    R. Zander, C. P. Rinsland, C. B. Farmer, J. Namkung, R. H. Norton andJ. M. Russel III:J. Geophys. Res.,93, 1669 (1988).ADSCrossRefGoogle Scholar
  5. [5]
    J. A. Coakley, R. D. Cess andF. B. Yurevich:J. Atmos. Sci.,40, 116 (1983).ADSCrossRefGoogle Scholar
  6. [6]
    R. J. Charlson, J. E. Lovelock, M. O. Andreae andS. G. Warren:Nature,326, 655 (1987).ADSCrossRefGoogle Scholar
  7. [7]
    T. S. Bates, R. J. Charlson andR. H. Ganmon:Nature,329, 319 (1987).ADSCrossRefGoogle Scholar
  8. [8]
    M. K. W. Ko andN. D. Sze: inEnvironmental and Climatic Impact of Coal Utilization, edited byJ. J. Singh andA. Deepack (Academic Press, 1980).Google Scholar
  9. [9]
    O. B. Toon, J. F. Kasting, R. P. Turco andM. S. Liu:J. Geophys. Res.,92, 943 (1987).ADSCrossRefGoogle Scholar
  10. [10]
    H. Rhode andI. Isaksen:J. Geophys. Res.,85, 7401 (1980).ADSCrossRefGoogle Scholar
  11. [11]
    R. P. Turco, P. Hamill, O. B. Toon, R. C. Whitten andC. S. Kiang:J. Atmos. Sci.,36, 699 (1979).ADSCrossRefGoogle Scholar
  12. [12]
    G. Visconti, G. Pitari andD. Menaguale:Nuovo Cimento C,8, 655 (1985).ADSCrossRefGoogle Scholar
  13. [13]
    R. B. Chatfield andP. J. Crutzen:J. Geophys. Res.,89, 7111 (1984).ADSCrossRefGoogle Scholar
  14. [14]
    A. H. Oort andE. M. Rasmussen:Atmospheric circulation statistics, NOAA Professional paper,5, US Department of Commerce (1971).Google Scholar
  15. [15]
    H. Hidalgo andP. J. Crutzen:J. Geophys. Res.,82, 5833 (1977).ADSCrossRefGoogle Scholar
  16. [16]
    G. Pitari andG. Visconti:J. Atmos. Chem.,5, 255 (1987).CrossRefGoogle Scholar
  17. [17]
    R. M. Rotty:J. Geophys. Res.,88, 1301 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    O. M. Andreae andH. Raemdonck:Science,221, 744 (1983).ADSCrossRefGoogle Scholar
  19. [19]
    JPL Publication 83-62:Chemical kinetics and photochemical data for use in stratospheric modelling evaluation number 6, NASA (1983).Google Scholar
  20. [20]
    NASA Publication 1208:Present State of Knowledge of the Upper Atmosphere 1988: An assessment report, NASA (1988).Google Scholar
  21. [21]
    P. H. Wine, W. L. Chameides andA. R. Ravishankara J. Geophys. Res. Lett.,8, 543 (1981).ADSCrossRefGoogle Scholar
  22. [22]
    P. J. Maroulis, A. L. Torres, A. B. Goldberg andA. R. Bandy:J. Geophys. Res.,85, 7345 (1980).ADSCrossRefGoogle Scholar
  23. [23]
    M. P. Mc Cormick:SAGE Aerosol Measurements, Vol. I, NASA Ref. Publ. 1144 (1985).Google Scholar
  24. [24]
    M. P. Mc Cormick:SAGE Aerosol Measurements, Vol. II, NASA Ref. Publ. 1149 (1986).Google Scholar
  25. [25]
    M. P. Mc Cormick:SAGE Aerosol Measurements, Vol. III, NASA Ref. Publ. 1173 (1987).Google Scholar
  26. [26]
    J. M. Rosen, D. J. Hoffman andS. P. Singh:J. Atmos. Sci.,35, 1304 (1978).ADSCrossRefGoogle Scholar
  27. [27]
    O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang andR. C. Whitten:J. Atmos. Sci.,36, 718 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • M. Franceschini
    • 1
  • G. Pitari
    • 1
  • G. Visconti
    • 1
  1. 1.Dipartimento di Fisica dell'UniversitàL'AquilaItalia

Personalised recommendations