Il Nuovo Cimento C

, Volume 5, Issue 3, pp 332–358 | Cite as

Behaviour of a thermodynamic model system under time-dependent periodic boundary conditions

  • R. S. Berry
  • F. D'Isep
  • L. Sertorio


A finite domainD 2 is enveloped by a finite domain.D 1. The domainD 1, in turn, is in contact with two thermal baths with time-dependent periodic temperaturesT s(t), andT e(t). We search for the best way to makeT 2, the temperature field belonging toD 2, as close as posible to a predetermined constant. This can be obtained with the insertion of controlled energy sources or sinks. We study the formal approach with zero energy expenditure and the maximization problem which is implied.


Boundary Control Control Field Mixed Boundary Condition Thermal Bath Finite Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. N. Lorenz:J. Atmos. Sci.,20 130 (1963).CrossRefADSGoogle Scholar
  2. (2).
    Hydrodynamic Instabilities and the Transition to Turbulence, edited byH. L. Swinney andJ. P. Gollub (Berlin, 1981).Google Scholar
  3. (3).
    F. D'Isep andL. Sertorio:Nuovo Cimento B,67, 41 (1982).MathSciNetADSGoogle Scholar
  4. (4).
    ASHRAE Handbook and Product Directory 1977 Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (New York, N. Y., 1980).Google Scholar
  5. (5).
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze andE. F. Mishchenko:The Mathematical Theory of Optimal Processes (New York, N. Y., 1962).Google Scholar
  6. (6).
    A. G. Butkovskii:Distributed Control Systems (Houston, Tex., 1969).Google Scholar
  7. (7).
    W. L. Brogan:Optimal Control Theory Applied to Systems Described by Partial Differential Equations, contribution to the seriesAdvances in Control Systems, edited byC. T. Leondes (New York, N. Y., 1968).Google Scholar
  8. (8).
    Liang-Tseng Fan:The Continuous Maximum Principle (New York, N. Y., 1966).Google Scholar

Copyright information

© Società Italiana di Fisica 1982

Authors and Affiliations

  • R. S. Berry
    • 1
  • F. D'Isep
    • 2
    • 3
  • L. Sertorio
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of ChicagoChicago
  2. 2.Istituto di Fisica dell'UniversitàTorino
  3. 3.Istituto Nazionale di Fisica NucleareSezione di TorinoTorinoItalia

Personalised recommendations