Journal of Russian Laser Research

, Volume 21, Issue 3, pp 214–222 | Cite as

Semiconductor laser with a biconical waveguide

  • A. V. Frantsesson
  • P. P. Vasil'ev
  • V. S. Zuev


The propagation losses in the fundamental mode of a bicone made of highly reflecting metal or a dielectric of large refraction were approximately estimated using Leontovich's boundary condition. A 400-fold concentration of the energy flux density has been obtained in a cross section which is much smaller than λ. Here, the losses are 2.5% at λ=550 nm in an Ag bicone and 12% in a semiconductor bicone with a band gap of ≈1 eV forhv larger than the band gap. The excitation efficiency of a bicone has been estimated. While not too large, it can be increased significantly using the method proposed in the present paper. The application of the optical bicone for the multiplication of a semiconductor-laser frequency is discussed. The results obtained are also of use in scanning near-field optical microscopy and in experiments on focusing laser pulses of ultrahigh power.


Semiconductor Laser Russian Laser Research Large Refraction Russian Laser Research Volume Excitation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Sanchez, C. F. Davis, Jr., K. C. Lin, and A. Javan,J. Appl. Phys.,49, 5270 (1978).CrossRefADSGoogle Scholar
  2. 2.
    V. S. Zuev and A. V. Frantsesson,J. Russ. Laser Res.,19, 465 (1998).Google Scholar
  3. 3.
    V. S. Zuev, “Fundamental waves in multiply connected waveguides: Concentration of light at areas of subwavelength size” [in Russian], Preprint No. 40, of the P. N. Lebedev Physical Institute, Moscow (1994).Google Scholar
  4. 4.
    V. S. Zuev and A. V. Frantsesson,Quantum Electron.,26, 250 (1996).CrossRefGoogle Scholar
  5. 5.
    R. D. Grober, R. J. Schoelkopf, and D. E. Prober,Appl. Phys. Lett.,70, 1354 (1997).CrossRefADSGoogle Scholar
  6. 6.
    A. Bezryadin, C. Dekker, and G. Schmid,Appl. Phys. Lett.,71, 1273 (1997).CrossRefADSGoogle Scholar
  7. 7.
    M. A. Leontovich,Selected Papers [in Russian]. Nauka, Moscow (1985), p. 352.Google Scholar
  8. 8.
    L. D. Landau, E. M. Lifshitz, and L. P. Pitaevsky,Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).MATHGoogle Scholar
  9. 9.
    H. Raether,Surface Plasmons, Springer-Verlag, Berlin (1988).Google Scholar
  10. 10.
    S. A. Schelkunoff,Electromagnetic Waves, D. van Nostrand, New York (1947).Google Scholar
  11. 11.
    E. D. Palik (ed.),Handbook of Optical Constants of Solids, Academic Press, Orlando (1985).Google Scholar
  12. 12.
    J. A. Stratton,Electromagnetic Theory, McGraw-Hill, New York (1941).MATHGoogle Scholar
  13. 13.
    J. Jersch and K. Dickmann,Appl. Phys. Lett.,68, 868 (1996).CrossRefADSGoogle Scholar
  14. 14.
    A. V. Bragas, S. M. Landi, and O. E. Martinez,Appl. Phys. Lett.,72, 2075 (1998).CrossRefADSGoogle Scholar
  15. 15.
    M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch,Phys. Rev. Lett.,68, 476 (1992).CrossRefADSGoogle Scholar

Copyright information

© Plenum/Kluwer Publishing Corporation 2000

Authors and Affiliations

  • A. V. Frantsesson
    • 1
  • P. P. Vasil'ev
    • 2
  • V. S. Zuev
    • 2
  1. 1.Fryazino Department of the Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazinoRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations