Skip to main content
Log in

Theoretical feasibility study of new high-efficiency continuous-wave lasers operating at electron transitions in the spectral regions from near ir to uv on the basis of unconventional mechanisms of forming the active gaseous media

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

This paper is a review of the results of theoretical studies related to the search for new mechanisms, which are not yet completely understood and have not been implemented so far, of forming the active laser media that offer the prospect of development of high-efficiency continuous-wave (cw) laser operating at electron transitions (in atoms or molecules) in a wide range of wavelengths (from near IR to UV). The main attention is paid to unconventional mechanisms of forming the population inversion of lasing-active levels. These mechanisms involve the intramultiplet (due to collisions with heavy particles) or ionization-induced (due to collisions with electrons) deactivation of the lowest lasing-active atomic level; the population of the upper lasing-active level as a result of three-body electron-ion recombination induced by the presence of alkali impurity, with simultaneous intramultiplet decay of the lower level; the mechanism ensuring the lasing transitions between repulsing terms of the involved molecules; and the exchange of vibrational-electronic excitation (for example, exchange of two vibrational quanta of an excited hydrogen molecule for a single electronic quantum of the iodine atom).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Zhmenuak, V. A. Kel'man, I. I. Klimovskii, et al.,Ukrain. Fiz. Zh.,40, 334 (1995).

    Google Scholar 

  2. V. M. Batenin, A. L. Golger, and I. I. Klimovskii,Kvantovaya Élektron.,6, 1077 (1979).

    Google Scholar 

  3. V. M. Batenin, A. L. Golger, and I. I. Klimovskii,Teplofiz. Vys. Temp.,19, 937 (1981).

    ADS  Google Scholar 

  4. V. F. Gavrikov, V. A. Shcheglov, and I. I. Klimovskii,Kvantovaya Élektron.,20, 227 (1993).

    Google Scholar 

  5. V. V. Buchanov, M. A. Kazaryan, E. I. Molodykh, and V. A. Shcheglov,Kvantovaya Élektron.,21, 1031 (1994).

    Google Scholar 

  6. I. M. Bel'dyugin, A. A. Stepanov, and V. A. Shcheglov,Kvantovaya Élektron.,13, No. 12 (1986).

    Google Scholar 

  7. I. I. Klimovskii and I. I. Shcheglov,Kratkie Soobshch. Fiz. (Bulletin of the P. N. Lebedev Phys. Inst., No. 7, 37 (1999).

    Google Scholar 

  8. I. I. Klimovskii and I. I. Shcheglov,Opt. Atmosf. Okeana,12, 1004 (1999).

    Google Scholar 

  9. O. V. Sereda, V. F. Tarasenko, A. V. Fedenev, and S. I. Yakovlenko,Kvantovaya Élektron.,20, 535 (1993).

    ADS  Google Scholar 

  10. L. G. Vintizenko, V. I. Gushenets, N. N. Koval', et al.,Dokl. Akad. Nauk SSSR,228, 809 (1986).

    Google Scholar 

  11. N. N. Koval', Yu. N. Kreindel', G. A. Mesyats, et al.,Pis'ma Zh. Tekh. Fiz.,12, 37 (1986).

    Google Scholar 

  12. A. M. Voinov, A. I. Konak, S. P. Mel'nikov, and A. A. Sinyanskii,Kvantovaya Élektron.,18, 1297 (1991).

    Google Scholar 

  13. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov,Kinetics of Nonequilibrium Low-Temperature Plasma [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. L. A. Vainshtein, I. I. Sobel'man, and E. A. Yukov,Excitation of Atoms and Broadening of Spectral Lines [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  15. W. L. Wiese, M. W. Smith, and B. M. Glennon,Atomic Transition Probabilities, US Government Printing Office, Washington DC (1966), Vol. 1.

  16. At. Data Nucl. Tables,21, 537 (1978).

  17. A. A. Radtsig and B. M. Smirnov,Parameters of Atoms and Atomic Ions [in Russian], Energoatomizdat, Moscow (1986).

    Google Scholar 

  18. W. L. Alford,IEEE J. Quantum Electron.,26, 1633 (1990).

    Article  Google Scholar 

  19. E. W. mcDaniel and W. Nigan (eds.),Applied Atomic Collisions, Academic, New York (1982), Vol. 3.

    Google Scholar 

  20. M. Ohwa, T. J. Moratz, and M. J. Kushner,J. Appl. Phys.,66, 5131 (1989).

    Article  ADS  Google Scholar 

  21. G. G. Petrash,Usp. Fiz. Nauk,105, 645 (1971).

    Google Scholar 

  22. A. A. Isaev and G. G. Petrash, “Pulse lasers at transitions of Tl and Pb atoms,”Proceedings of the P. N. Lebedev Physical Institute, Nauka, Moscow (1975), Vol. 81, p. 3.

    Google Scholar 

  23. G. Gould,Chem. Lasers, Appl. Opt. Suppl., (1965), p. 59.

  24. V. M. Batenin, S. V. Kalinin, I. I. Klimovskii, and K. M. Ospanov,Kvantovaya Élektron.,18, 189 (1991).

    Google Scholar 

  25. R. H. Pantell and H. E. Puthoff,Fundamentals of Quantum Electronics, Wiley, New York (1969).

    Google Scholar 

  26. JANAF Thermochemical Tables, NRSD, Washington DC (1971).

  27. C. H. Corliss and W. R. Bozeman,Experimental Transition Probabilities for Spectral Lines of Seventy Elements, US Government Printing Office, Washington DC (1962).

    Google Scholar 

  28. M. Czajkowski, L. Krause, and G. M. Skardis,Can. J. Phys.,51, 334 (1973).

    ADS  Google Scholar 

  29. Yu. I. Malakhov,Opt. Spektrosk.,44, 214 (1978).

    ADS  Google Scholar 

  30. T. Holstein,Phys. Rev.,72, 1212 (1947).

    Article  MATH  ADS  Google Scholar 

  31. L. M. Biberman,Dokl. Akad. Nauk SSSR,59, 659 (1948).

    Google Scholar 

  32. H. Griem,Plasma Spectroscopy, McGraw-Hill, New York (1964).

    Google Scholar 

  33. A. V. Eletskii, L. A. Palkina, and B. M. Smirnov,Transport Phenomena in Weakly Ionized Plasma [in Russian], Atomizdat, Moscow (1975).

    Google Scholar 

  34. A. Kh. Mnatsakanyuan, G. V. Naidis, and N. P. Shternov,Kvantovaya Élektron.,5, 597 (1978).

    Google Scholar 

  35. A. V. Eletskii, Yu. Kh. Zemtsov, A. V. Rodin, and A. N. Starostin,Dokl. Akad. Nauk SSSR,220, 318 (1975).

    ADS  Google Scholar 

  36. R. von Winkler,Ann. Phys. B,7, 37 (1973).

    Google Scholar 

  37. A. E. S. Green,Raketn. Tekh. Kosmonavtka,4, 3 (1966).

    Google Scholar 

  38. P. A. Bokhan,Pis'ma Zh. Éksp. Teor. Fiz.,42, 335 (1985).

    Google Scholar 

  39. P. A. Bokhan,Kvantovaya Élektron.,13, 1837 (1986).

    Google Scholar 

  40. S. V. Kalinin, “Gas-discharge method of the cw generation at self-contained atomic transitions,”PhD Thesis, Institute of High Temperatures, Moscow (1984).

    Google Scholar 

  41. D. H. Burde and R. A. McFarlane,J. Chem. Phys.,64, 1850 (1976).

    Article  ADS  Google Scholar 

  42. G. Rinke,Appl. Phys. B,32, 83 (1983).

    Article  ADS  Google Scholar 

  43. B. V. Nekrasov,Fundamentals of General Chemistry, [in Russian], Khimiya, Moscow (1973), Vol. 2.

    Google Scholar 

  44. M. A. Kazaryan, G. G. Petrash, and A. N. Trofimov, “On the widening class of lasers operating at the transitions between resonance and metastable levels of metal atoms,” in:Abstracts of Papers, National Conference on Population Inversion and Lasing at Transitions in Atoms and Molecules; Pt. 1: Active Media for Transitions in Atoms and Small-Size Molecules, Tomsk State University (1986), p. 82.

  45. G. R. Russel, N. M. Herheim, and T. J. Pivirotto,Appl. Phys. Lett.,21, 565 (1972).

    Article  Google Scholar 

  46. T. W. Karras and C. E. Anderson,Atm. Ocean. Opt.,6, 228 (1993).

    Google Scholar 

  47. G. A. Luk'yanov,Supersonic Plasma Jets, [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  48. V. A. Bashilov, L. I. Gerasimov, and V. I. Smilga, “On using the accelerator technique for quasicontinuous-wave lasers on metal vapors,” in:Abstracts of Papers, IV Soviet-Union Conference on Plasma Accelerators and Ion Injectors, Atomizdat, Moscow (1978), p. 376.

    Google Scholar 

  49. S. V. Arlantsev, V. V. Buchanov, L. A. Vasil'ev, et al.,Kvantovaya Élektron.,7, 2319 (1980).

    Google Scholar 

  50. B. L. Borovich and N. I. Yurchenko,Kvantovaya Élektron.,11, 2081 (1984).

    Google Scholar 

  51. N. L. Kupriyanov,Kvantovaya Élektron.,10, 2124 (1983).

    Google Scholar 

  52. G. D. Billing and E. R. Fisher,Chem. Phys.,18, 225 (1976).

    Article  Google Scholar 

  53. N. G. Basov, V. D. Zvorykin, P. P. Ionin, et al.,Kratkie Soobshch. Fiz. (P. N. Lebedev Institute Reports), No. 10, 53 (1984).

    Google Scholar 

  54. V. N. Kondrat'ev,Rate Constants of Gas-Phase Reactions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  55. Q. A. Arguello and E. H. Staricco,Ber. Bunsenges. Phys. Chem.,87, 60 (1983).

    Google Scholar 

  56. J. Lukasik and J. Ducuing,J. Chem. Phys.,60, 331 (1974).

    Article  Google Scholar 

  57. A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, and V. A. Shcheglov,Chemical Lasers [in Russian], Mir, Moscow (1980).

    Google Scholar 

  58. N. A. Smirnova,Methods of Statistical Thermodynamics in Physical Chemistry, [in Russian], Vysshaya Shkola, Moscow (1973).

    Google Scholar 

  59. A. A. Stepanov, V. A. Shcheglov, and N. N. Yuryshev,Kvantovaya Élektron.,12, 1127 (1985).

    Google Scholar 

  60. T. E. Hunter,Chem. Phys. Lett.,75, 456 (1980).

    Article  ADS  Google Scholar 

  61. K. Smith and R. M. Thompson,Computer Modeling of Gas Lasers, Plenum Publishers, New York (1978).

    Google Scholar 

  62. Sh. F. Araslanov,Studies of Physical Gas Dynamics [in Russian], Aviatsionnyi Institute, Kazan (1983).

    Google Scholar 

  63. H. T. Saelee, and J. Lucas,J. Phys. D,16, 343 (1977).

    Article  ADS  Google Scholar 

  64. J. B. Hasted,Physics of Atomic Collisions, Butterworths, London (1964).

    Google Scholar 

  65. M. G. Voitik and A. G. Molchanov, “Kinetic processes forming active media of excimer lasers,”Preprint No. 105 of the H. N. Lebedev Physical Institute, Moscow (1979).

  66. D. I. Slovetskii,Mechanisms of Chemical Reactions in Nonequilibrium Plasma [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  67. C. M. Ferreira and J. Loureiro,J. Phys. D,16, 2471 (1983).

    Article  ADS  Google Scholar 

  68. R. W. Crompton, D. K. Gibson, and A. G. Robertson,Phys. Rev. A,2, 1386 (1970).

    Article  ADS  Google Scholar 

  69. A. N. Lobanov, Ya. I. Londer, L. P. Menakhin, and K. N. Ul'yanov,Teplofiz. Vys. Temp.,19, 1097 (1981).

    Google Scholar 

  70. N. G. Basov, N. E. Vtorova, A. N. Lobanov, et al., “Theoretical analysis of lasers at rovibrational transitions of molecular hydrogen,”Preprint No. 47 of the P. N. Lebedev Physical Institute, Moscow (1977).

  71. L. Frost and A. Felps,Phys. Rev.,127, 1621 (1962).

    Article  ADS  Google Scholar 

  72. D. A. Erwin and J. A. Kunc,IEEE Trans.,PS-11, 266 (1983).

    Google Scholar 

  73. Yu. I. Bychkov, Yu. D. Korolev, and G. A. Mesyats,Usp. Fiz. Nauk,126, 451 (1978).

    Google Scholar 

  74. H. Teitelbaum,Chem. Phys. Lett.,106, 69 (1984).

    Article  ADS  Google Scholar 

  75. F. Bartlma,Gasdynamik der Verbrennung, Springer, Wien (1975).

    Google Scholar 

  76. A. V. Eletskii,Usp. Fiz. Nauk,125, 279 (1978).

    Google Scholar 

  77. A. V. Eletskii and B. M. Smirnov,Physical Processes in Gas Lasers [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  78. D. A. Frank-Kamenetskii,Lectures on Plasma Physics [in Russian], Atomizdat, Moscow (1964).

    Google Scholar 

  79. D. Rogovin,Phys. Rev. A,33, 962 (1986).

    Article  Google Scholar 

  80. H. F. Crawford, H. L. Welsh and J. L. Locke,Phys. Rev.,75, 1607 (1949).

    Article  ADS  Google Scholar 

  81. H. F. Crawford, H. L. Welsh, J. K. F. MacDonald, and J. L. Locke,Phys. Rev.,80, 469 (1950).

    Article  ADS  Google Scholar 

  82. J. P. Compa and J. A. A. Ketelaar,Mol. Phys.,1, 14 (1958);1, 343 (1958).

    Article  Google Scholar 

  83. M. O. Bulanin (ed.),Spectroscopy of Interacting Molecules [in Russian], M. V. Lomonosov Moscow State University, (1970).

  84. M. M. Mkrtchan, V. T. Platonenko, and R. V. Khokhlov,Zh. Éksp. Teor. Fiz.,65, 145 (1973).

    Google Scholar 

  85. L. Herman and R. Herman,Ann. Geophys.,1, 165 (1944).

    Google Scholar 

  86. R. Herman,C. R. Acad. Sci. (Paris),222, 492 (1946); R. Herman, C. Weniger, and L. Herman,Phys. Rev.,82, 751 (1951).

    Google Scholar 

  87. R. Herman and L. Herman,J. Phys. (Paris),11, 69 (1950).

    Google Scholar 

  88. C. D. Cooper and M. Lichtenstein,Phys. Rev.,109, 2026 (1958); C. D. Cooper, A. C. Cobb, and E. L. Tolnas,J. Mol. Spectrosc.,7, 223 (1961).

    Article  ADS  Google Scholar 

  89. J. W. McConkey, D. J. Burns, K. A. Moran, et al.,Phys. Lett.,22, 416 (1966).

    Article  ADS  Google Scholar 

  90. J. F. Noxon,J. Chem. Phys.,36, 926 (1962).

    Article  Google Scholar 

  91. D. L. Cunningham and K. C. Clark,J. Chem. Phys.,61, 1118 (1974).

    Article  Google Scholar 

  92. S. V. Filseth, F. Stuhl, and K. H. Welge,J. Chem. Phys.,52, 239 (1970).

    Article  Google Scholar 

  93. J. R. Murray, H. T. Pewell, and C. K. Rhodes,IEEE J. Quantum Electron.,10, 781 (1974).

    Article  Google Scholar 

  94. H. T. Powell, J. R. Murray, and C. K. Rhodes,Appl. Phys. Lett.,25, 730 (1974).

    Article  ADS  Google Scholar 

  95. A. N. Zaidel', G. V. Ostrovskaya, and Yu. I. Ostrovskii,Technical and Practical Aspects of Spectroscopy [in Russian], Nauka, Moscow, (1976).

    Google Scholar 

  96. R. E. M. Hedges, D. L. Drummond, and A. Gallagher,Phys. Rev. A,6, 1519 (1972).

    Article  ADS  Google Scholar 

  97. J. Pascale and J. Vanderplanque,J. Chem. Phys.,60, 2278 (1974).

    Article  Google Scholar 

  98. D. L. Drummond and A. Gallagher,J. Chem. Phys.,60, 3426 (1974).

    Article  Google Scholar 

  99. G. York, R. Scheps, and A. Gallagher,J. Chem. Phys.,63, 1052 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from a manuscript submitted December 20, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biryukov, A.S., Klimovskii, I.I., Stepanov, A.A. et al. Theoretical feasibility study of new high-efficiency continuous-wave lasers operating at electron transitions in the spectral regions from near ir to uv on the basis of unconventional mechanisms of forming the active gaseous media. J Russ Laser Res 21, 101–156 (2000). https://doi.org/10.1007/BF02508566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508566

Keywords

Navigation