Skip to main content
Log in

Three-dimensional optical memory in ferroelectric media

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The physical principles underlying the development of three-dimensional nonvolatile optical memory in ferroelectric media are considered. Optical memory is realized in a transparent optical medium whose active components are ferroelectric microparticles. The optical medium is exposed to nondestructive laser radiation, which allows for bit-by-bit writing and reading of information. Writing of information is made inside the the laser caustic by changing the orientation of polarization of ferroelectric particles to the direction of the external electric field under the influence of the laser radiation. Written data can be read by detecting the laser-radiation second harmonic generated in the laser caustic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Patton,Electronics, No. 8, 3 (1994).

    Google Scholar 

  2. R. I. Personov, “Laser fluorescence analysis of organic molecules in solid solutions,” in: V. S. Letokhov (ed.),Laser Analytical Spectroscopy [in Russian], Nauka, Moscow (1986), p. 209.

    Google Scholar 

  3. S. H. Altner, S. Bernet, A. Renn, et al.,Opt. Commun.,120, 103 (1995).

    Article  ADS  Google Scholar 

  4. N. W. Tyer and R. S. Becker,J. Am. Chem. Soc.,22, 1289 (1971).

    Google Scholar 

  5. D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, et al.,Kvantovaya Élektron.,23, 871 (1996).

    Google Scholar 

  6. J. Malkin, A. Zelichenok, V. Krongauz, et al.,J. Am. Chem. Soc.,116, 1101 (1994).

    Article  Google Scholar 

  7. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko,Photorefractive Crystals in Coherent Optical Systems [in Russian], Nauka, St. Petersburg (1992).

    Google Scholar 

  8. A. Hadni and R. Thomas,Opt. Commun.,10, No. 4 (1974). See also: A. Hadni,Ferroelectrics,140, 25 (1993).

    Google Scholar 

  9. G. D. Bacher, M. P. Chiao, G. L. Dunning, et al.,Opt. Lett.,21, 18 (1996).

    Article  ADS  Google Scholar 

  10. L. D. Landau and E. M. Lifshits,Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    MATH  Google Scholar 

  11. V. M. Fridkin,Ferroelectrics-Semiconductors [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  12. I. R. Shen,Principles of Nonlinear Optics [Russian translation], Nauka, Moscow (1989).

    MATH  Google Scholar 

  13. J. Y. Chang, M. H. Garrett, P. Tayebati, et al.,J. Opt. Soc. Am. B,12, 248 (1995).

    ADS  Google Scholar 

  14. A. A. Grekov, A. I. Rodin, and V. M. Fridkin,Fiz. Tverd. Tela,12, 3643 (1970).

    Google Scholar 

  15. L. M. Belyaev, I. I. Groshik, V. A. Lyakhovitskaya, et al.,Pis'ma Zh. Éksp. Teor. Fiz.,6, 481 (1967).

    Google Scholar 

  16. S. A. Akhmanov and N. I. Koroteev,Methods of Nonlinear Optics in Light-Scattering Spectroscopy [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  17. A. A. Mokhnatyuk,RF Patent No. 2121174,Byull. Izobret., No. 30 (1998).

  18. A. A. Mokhnatyuk,Application for an RF Patent No. 98119328 (1998, to be published).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from a manuscript submitted March 16, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhnatyuk, A.A. Three-dimensional optical memory in ferroelectric media. J Russ Laser Res 20, 279–295 (1999). https://doi.org/10.1007/BF02508545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508545

Keywords

Navigation