Skip to main content
Log in

Cluster quasiclassical dynamics in multiphoton scattering models. Analytical results

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

By introducing collective (“cluster”) dynamic variables that explicitly take into account the symmetry of the model Hamiltonians, two new “cluster” (that take into account the quantum mode correlations) types of quasiclassical approximation for the evolution operatorsU H (t) for a wide class of multiphoton scattering models are obtained; the first type treatsU H (t) as the displacement operator of theSU(2)-group with the parameters determined by the solution to the “classical” equations of motion, and the second type gives a spectral expansion ofU H (t) inSU(2)-quasiclassical eigenfunctions. In this framework, an analysis of the dynamics of the most important quantum-statistical characteristics of the models (mean photon numbers and their variances, field quadratures for individual modes, quasiprobability functions, etc.) is given. In particular, the possibility of realization of the two new types of dynamics depending on the initial states (double-periodic harmonic dynamics forSU(2)-coherent initial states and anharmonic dynamics, which leads to such effects as “collapse-revival” of Rabi oscillations, for ordinary coherent states) is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bloembergen,Nonlinear Optics, W. A. Benjamin, New York (1965); F. Zernike and J. T. Midwinter,Applied Nonlinear Optics, Wiley, New York (1973); L. D. Landau and E. M. Lifshits,Electrodynamics of Condensed Media [in Russian], Nauka, Moscow, (1982).

    MATH  Google Scholar 

  2. J. PerinaQuantum Statistics of Linear and Nonlinear Optical Phenomena, Reidel, Dordrecht (1984); D. N. Klyshko,Physical Fundamentals of Quantum Electronics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  3. R. Bonifacio and G. Preparata,Phys. Rev. A,2, 336 (1970); S. Kumar and C. L. Mehta,Phys. Rev. A,21, 1573 (1980);24, 1460 (1981).

    Article  ADS  Google Scholar 

  4. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon,Phys. Rev. Lett.,44, 1329 (1980);Phys. Rev. A,23, 236 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Mandel,Opt. Comm.,42, 437 (1982).

    Article  ADS  Google Scholar 

  6. S. P. Nikitin and A. V. Masalov,Quantum Opt.,3, 105 (1991).

    Article  ADS  Google Scholar 

  7. V. P. Karassiov,Trudy Fizicheskogo Instituta imeni P. N. Lebedeva, Nauka, Moscow (1992), Vol. 208, p. 18 [English translation: “Invariant-algebraic approach to the theory of matter-radiation interaction,” in: V. I. Man'ko and M. A. Markov (eds.),Research in Quantum Field Theory, Proceedings of the Lebedev Physical Institute Nova Science, New York (1996), Vol. 214, p. 1].

    Google Scholar 

  8. S. S. Hassan, M. S. Abdalla, A.-S. F. Obada, et al.,J. Mod. Opt.,40, 1351 (1993).

    MATH  MathSciNet  ADS  Google Scholar 

  9. A. Bandilla, G. Drobny, and I. Jex,Phys. Rev. A,53, 507 (1996).

    Article  ADS  Google Scholar 

  10. S. M. Chumakov and M. Kozierowski,Quantum Semiclass. Opt. 8, 775 (1996).

    Article  ADS  Google Scholar 

  11. V. P. Karassiov,Teor. Mat. Fiz.,95, 3 (1993);J. Phys. A.,27, 153 (1994).

    Google Scholar 

  12. A. M. Perelomov,Generalized Coherent States and Their Applications [in Russian], Nauka, Moscow (1987) F. T. Arecchi, E. Courtens, R. Gilmore, et al.,Phys. Rev. A,6, 2211 (1972).

    MATH  Google Scholar 

  13. V. P. Karassiov, “A nonlinearsl(2)-dynamics and new quasiclassical solutions for a class of coupled systems,” E-print QUANT-PH/9710012 (1997);Phys. Lett. A,238, 19(1998).

  14. E. Jahnke and F. Emde,Funktiontafeln mit Formeln und Kurven, B. E. Teubner, Berlin (1948), 4 Auflag; D. F. Lawden,Elliptic Functions and Applications, Springer Verlag, New York, Berlin (1989).

    Google Scholar 

  15. A. I. Markushevich,Introduction to the Classical Theory, of Abel Functions [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  16. D. Stoler,Phys. Rev. D,1, 3217 (1970).

    Article  ADS  Google Scholar 

  17. J. M. Negele,Rev. Mod. Phys.,54, 913 (1982); D. M. Jezek and E. S. Hernandez,Phys. Rev. C,35, 1555, (1987).

    Article  ADS  Google Scholar 

  18. A. Erdelyi (ed.),Higher Transcendental Functions. The Bateman Manuscript Project, McGraw-Hill, New York (1953), Vol. 1.

    Google Scholar 

  19. F. A. Berezin,Comm. Math. Phys.,63, 131 (1978); L. G. Yaffe,Rev. Mod. Phys.,54, 407 (1982); A. Chatterjee,Phys. Rep.,186, 249 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. A. Inomata, H. Kuratsuji, and C. C. Gerry,Path Integrals and Coherent States of SU(2)and SU(1,1) World Scientific, Singapore (1992).

    Google Scholar 

  21. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner,Phys. Rep.,106, 121 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  22. G. S. Agarwal,Phys. Rev. A,24 2889 (1981);47, 4608 (1993); K. B. Wolf, N. M. Atakishiyev, and S. M. Chumakov, “Wigner distributions of some dynamical models,” in: P. Kasperkovitz and D. Grau (eds.),Proceedings of the Fifth Wigner Symposium (Vienna, August 1997), World Scientific, Singapore (1998), p. 370.

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Madelung,Die Mathematischen Hilfsmittel des Physikers, Springer Verlag, Berlin (1957).

    Google Scholar 

  24. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,Quantum Theory of Angular Momentum [in Russian], Nauka, Leningrad (1975).

    MATH  Google Scholar 

  25. B. Yurke and D. Stoler,Phys. Rev. Lett.,57, 13 (1986); G. J. Milburn,Phys. Rev. A,33, 674 (1986); P. Tombesi and A. Mecozzi,J. Opt. Soc. Am. B,4, 1700 (1987)

    Article  ADS  Google Scholar 

  26. B. C. Sanders,Phys. Rev. A,40, 2417 (1989); C. C. Gerry and T. Kiefer,J. Phys. A,24, 3513 (1991),

    Article  ADS  Google Scholar 

  27. M. M. Sushchinskii,Raman Scattering and the Structure of Matter [in Russian], Nauka, Moscow (1981);Stimulated Light Scattering [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  28. S. A. Akhmanov and N. I. Koroteev,Methods of Nonlinear Optics in the Spectroscopy of Light Scattering [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  29. D. R. Truax,Phys. Rev. D,31, 1988 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  30. V. P. Karassiov and L. A. Shelepin,Trudy Fizicheskogo Instituta imeni P. N. Lebedeva, Nauka, Moscow (1976), Vol. 87, p. 55 [English translation: “Difference methods and their role in the theory of coherent phenomena,” in: N. G. Basov (ed.),Coherent Cooperative Phenomena, Proceedings of the P. N. Lebedev Physical Institute, Consultants Bureau, New York (1977), Vol. 57, p. 53].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from a manuscript submitted November 17, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karassiov, V.P. Cluster quasiclassical dynamics in multiphoton scattering models. Analytical results. J Russ Laser Res 20, 239–270 (1999). https://doi.org/10.1007/BF02508543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508543

Keywords

Navigation