Advertisement

Journal of Statistical Physics

, Volume 88, Issue 1–2, pp 47–79 | Cite as

Dynamically driven renormalization group

  • Alessandro Vespignani
  • Stefano Zapperi
  • Vittorio Loreto
Articles

Abstract

We present a detailed discussion of a novel dynamical renormalization group scheme: the dynamically driven renormalization group (DDRG). This is a general renormalization method developed for dynamical systems with non-equilibrium critical steady state. The method is based on a real-space renormalization scheme driven by a dynamical steady-state condition which acts as a feedback on the transformation equations. This approach has been applied to open nonlinear systems such as self-organized critical phenomena, and it allows the analytical evaluation of scalling dimensions and critical exponents. Equilibrium models at the critical point can also be considered. The explicit application to some models and the corresponding results are discussed.

Key Words

Renormalization group nonequilibrium steady states driven dynamical systems self-organized criticality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Huang, “Statistical Mechanics”, Wiley (New York, 1987).MATHGoogle Scholar
  2. 2.
    G. Parisi, “Statistical Field Theory”, Addison-Wesley (Wokingham, 1988).MATHGoogle Scholar
  3. 3.
    J. M. Yeomans, “Statistical Mechanics of Phase Transitions”, Clarendon Press (Oxford, 1992).Google Scholar
  4. 4.
    C. Domb and M. S. Green (eds.), “Phase Transition and Critical Phenomena”, Vols. 1-6, Academic Press (London, 1972–1976); C. Domb and J. L. Lebowitz (eds.), “Phase Transition and Critical Phenomena,” Vols. 7-17, Academic Press (London, 1983–1995).MATHGoogle Scholar
  5. 5.
    D. Amit, “Field Theory, the Renormalization Group and Critical Phenomena”, World Scientific (Singapore, 1984).Google Scholar
  6. 6.
    S. K. Ma, “Modern Theory of Critical Phenomena”, Addison-Wesley (Workingham, 1976).CrossRefGoogle Scholar
  7. 7.
    R. J. Creswick, H. A. Farach, and C. P. Poole jr., “Introduction to Renormalization Group Methods in Physics”, Wiley (New York, 1992).MATHGoogle Scholar
  8. 8.
    T. W. Burkhard and J. M. J. Van Leeuwen, “Real Space Renormalization”, (Springer, Heidelberg) (1982).Google Scholar
  9. 9.
    S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28: 1655 (1983);J. Stat. Phys. 34:497 (1984).CrossRefADSGoogle Scholar
  10. 10.
    B. Schmittmann and R. K. Zia, in ref. 4 “, Vol. 17 (1995).Google Scholar
  11. 11.
    T. Vicsek,Fractal Growth Phenomena, World Scientific, Singapore (1992).MATHGoogle Scholar
  12. 12.
    For a review, see, e.g.: P. Bak, K. Chen, and M. Creutz,Nature 342: 7800 (1989); P. Bak and M. Creutz, in “Fractals and Disordered Systems”, Vol. II, ed. by A. Bunde and S. Havlin, Springer-Verlag, Heidelberg (1993).CrossRefGoogle Scholar
  13. 13.
    P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. Lett. 59: 381 (1987);Phys. Rev. A 38: 364 (1988).MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    B. B. Mandelbrot, “The Fractal Geometry of Nature” (Freeman and Company, New York, 1983).MATHGoogle Scholar
  15. 15.
    L. P. Kadanoff,Physica A 163:1 (1990);Phys. Today 44(3):9 (1991).MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    A. Erzan, L. Pietronero, and A. Vespignani,Rev. Mod. Phys. 67: 545 (1995).CrossRefADSGoogle Scholar
  17. 17.
    L. Pietronero, A. Vespignani, and S. Zapperi,Phys. Rev. Lett. 72: 1690 (1994); A. Vespignani, S. Zapperi, and L. Pietronero,Phys. Rev. E 51:1711 (1995).CrossRefADSGoogle Scholar
  18. 18.
    V. Loreto, L. Pietronero, A. Vespignani, and S. Zapperi,Phys. Rev. Lett. 75: 465 (1995); V. Loreto, A. Vespignani, and S. Zapperi,J. of Phys. A 29: 2981 (1996).CrossRefADSGoogle Scholar
  19. 19.
    P. Bak, K. Chen, and C. Tang,Phys. Lett. A 147: 297 (1990).CrossRefADSGoogle Scholar
  20. 20.
    B. Drossel and F. Schwabl,Phys. Rev. Lett. 69: 1629 (1992).CrossRefADSGoogle Scholar
  21. 21.
    J. Keizer, “Statistical Thermodynamics of Nonequilibrium Processes”, Springer-Verlag (New York, 1987).Google Scholar
  22. 22.
    J. J. Prentis and B. S. Elenbagen,J. Phys. A,28: 5469 (1995).MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    L. P. Kadanoff,Physics 2: 263 (1966).Google Scholar
  24. 24.
    M. Suzuki,Progr. Theor. Phys. 51: 1257 (1974).CrossRefADSGoogle Scholar
  25. 25.
    M. Suzuki, in “Dynamical Critical Phenomena and Related Topics”, C. P. Enz, ed., Lecture Notes in Phys. 104, Springer-Verlag (Berlin, 1979).Google Scholar
  26. 26.
    T. Niemeijer and J. M. J. van Leeuwen, in ref. 14 “, Vol. 6 (1976).Google Scholar
  27. 27.
    R. Glauber,J. Math. Phys. 4: 294 (1963).MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Y. Achiam and J. M. Kosterlitz,Phys. Rev. Lett. 41: 128 (1978).CrossRefADSGoogle Scholar
  29. 29.
    A. A. Migdal,Sov. Phys. JEPT 42: 413 (1975); L. Kadanoff,Ann. Phys. 100: 359 (1976).ADSGoogle Scholar
  30. 30.
    M. Suzukiet al., Prog. Theor. Phys. 61: 864 (1979).MATHCrossRefADSGoogle Scholar
  31. 31.
    G. Mazenko and O. T. Valls in ref. 8, “, p. 87, and references therein.Google Scholar
  32. 32.
    R. Dickman,Phys. Rev. A 38: 2588 (1988).CrossRefADSGoogle Scholar
  33. 33.
    G. Grinstein, inScale Invariance, Interfaces and Non-Equilibrium Dynamics, edited by A. McKaneet al., NATO Advanced Study Institute, Series B: Physics Vol. 344 (Plenum, New York, 1995).Google Scholar
  34. 34.
    P. Grassberger and H. Kantz,J. Stat. Phys. 63: 685 (1991); W. K. Mossner, B. Drossel, and F. Schwabl,Physica A 190: 205 (1992).CrossRefGoogle Scholar
  35. 35.
    P. Grassberger,J. Phys. A Math. Gen. 26: 2081 (1993); C. L. Henley,Phys. Rev. Lett. 71: 2741 (1993).CrossRefADSGoogle Scholar
  36. 36.
    K. Christensen, H. Flyvbjerg, and Z. Olami,Phys. Rev. Lett. 71: 2737 (1993).CrossRefADSGoogle Scholar
  37. 37.
    B. Drossel, S. Clar, and F. Schwabl,Phys. Rev. Lett.,71: 3739 (1993).CrossRefADSGoogle Scholar
  38. 38.
    S. Clar, B. Drossel, and F. Schwabl,Phys. Rev. E 50: 1009 (1994).CrossRefADSGoogle Scholar
  39. 39.
    Y. C. Zhang,Phys. Rev. Lett. 63: 470 (1989).CrossRefADSGoogle Scholar
  40. 40.
    S. S. Manna,J. Stat. Phys. 59: 509 (1990);Physica A 179: 249 (1991).CrossRefGoogle Scholar
  41. 41.
    P. Grassberger and S. S. Manna,J. Phys. France 51: 1077 (1990).Google Scholar
  42. 42.
    A. Stella, C. Tebaldi, and G. Caldarelli,Phys. Rev. E 52: 72 (1995).CrossRefADSGoogle Scholar
  43. 43.
    D. Dhar and R. Ramaswamy,Phys. Rev. Lett. 63: 1659 (1989); D. Dhar,Phys. Rev. Lett. 64: 1613 (1991); S. N. Majumdar and D. Dhar,Physica A 185: 129 (1992).MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    A. Ben Hur, R. Hallgass, and V. Loreto,Phys. Rev. E 54: 1426 (1996).CrossRefADSGoogle Scholar
  45. 45.
    E. V. Ivashkevich,Phys. Rev. Lett. 76: 3368 (1996).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Alessandro Vespignani
    • 1
  • Stefano Zapperi
    • 2
  • Vittorio Loreto
    • 3
  1. 1.Instituut-LorentzUniversity of LeidenLeidenThe Netherlands
  2. 2.Center for Polymer Studies and Department of PhysicsBoston UniversityBoston
  3. 3.Dipartimento di FisicaUniversitá di Roma “La Sapienza”RomeItaly

Personalised recommendations