Russian Physics Journal

, Volume 42, Issue 3, pp 304–310 | Cite as

Influence of meso-scale structure on the Hugoniot elastic limit of constructional ceramics

  • E. G. Skripnyak
Article
  • 35 Downloads

Abstract

A model of high strain rates of ceramic materials in shock waves is suggested. It is shown that the Hugoniot elastic limit of constructional ceramic materials based on boron carbide, silicon carbide, and aluminum oxide essentially depends on their meso-scale structure. The increase of porosity and the concentration and sizes of microcracks may reduce the Hugoniot elastic limit.

Keywords

Ceramic Material Boron Carbide Shock Compression Initial Porosity Hugoniot Elastic Limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Kipp and D. E. Grady, in: High-Strength Ceramics, Sandia Report SAND 89-1461, 54 pp.Google Scholar
  2. 2.
    D. E. Grady, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dirk, et al., eds., Elsevier Sci. Publ. (1992), p. 455.Google Scholar
  3. 3.
    N. S. Brar, Z. Rosenberg, and S. J. Bless, J. Appl. Phys.,69, 7890 (1991).CrossRefADSGoogle Scholar
  4. 4.
    Z. Rosenberg, N. S. Brar, and S. J. Bless, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 471.Google Scholar
  5. 5.
    W. H. Gust and E. B. Royce, J. Appl. Phys.,42, 276 (1971).CrossRefADSGoogle Scholar
  6. 6.
    F. L. Addessio and J. N. Johnson, J. Appl. Phys.,67, 3275 (1990).CrossRefADSGoogle Scholar
  7. 7.
    W. D. Winkler and A. J. Stilp, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 475.Google Scholar
  8. 8.
    D. Yaziv, S. J. Bless, Z. Rosenberg, and D. Jorick, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 425.Google Scholar
  9. 9.
    N. M. Murray, N. K. Bourne, and Z. Rosenberg, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 491.Google Scholar
  10. 10.
    Z. Rozenberg, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 439.Google Scholar
  11. 11.
    M. E. Kipp and D. E. Grady, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 459.Google Scholar
  12. 12.
    R. M. Springs, J. B. Mitchell, and T. Vasilos, J. Am. Ceram. Soc.,47, 323 (1964).CrossRefGoogle Scholar
  13. 13.
    D. E. Munson and R. J. Lawrence, J. Appl. Phys.,50, 6273 (1979).CrossRefADSGoogle Scholar
  14. 14.
    D. J. Steinberg, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds, Elsevier Sci. Publ. (1992), p. 447.Google Scholar
  15. 15.
    D. A. Mandel, K. S. Holian, and R. Henninger, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 931.Google Scholar
  16. 16.
    G. I. Kanel, S. V. Razorenov, and V. E. Fortov, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 451.Google Scholar
  17. 17.
    N. S. Brar, Z. Rosenberg, and S. J. Bless, in: Shock Compression of Condensed Matter, 1991, S. C. Schmidt, R. D. Dick, et al., eds., Elsevier Sci. Publ. (1992), p. 467.Google Scholar
  18. 18.
    T. Mashimo, in: Shock Waves in Condensed Matter, 1988, S. C. Schmidt and N. S. Holmes, eds., Elsevier Sci. Publ. (1988), p. 289.Google Scholar
  19. 19.
    T. Tahiguchi, H. Yasuo, K. Kondo, and A. B. Sawaoka, J. Appl. Phys.,66, 1664 (1989).ADSGoogle Scholar
  20. 20.
    A. Yu. Dolgoborodov and I. M. Voskoboinikov, Tech. Phys.,38, 158 (1993).Google Scholar
  21. 21.
    Y. Yeshurun, Z. Rozenberg, and D. G. Brandon, in: Int. Phys. Conf., Ser. 102, Sec. 7, IOP Publ. Ltd. (1989), p. 379.Google Scholar
  22. 22.
    D. R. Curran, L. Seaman, T. Cooper, and D. A. Shokey, Int. J. Imp. Eng.,13, 53 (1993).CrossRefGoogle Scholar
  23. 23.
    L. Seaman, D. R. Curran, and W. J. Murr, Trans. ASME J. Appl. Mech.,52, 593 (1985).CrossRefGoogle Scholar
  24. 24.
    J. I. Tranchet and F. Collombet, in: Metallurgical and Materials Applications of Shock-Waves and High-Strain-Rate Phenomena, 1994, L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds., Elsevier Sci. Publ. (1995), p. 535.Google Scholar
  25. 25.
    D. R. Curran, in: Shock Waves in Condensed Matter, 1988, S. C. Schmidt and N. S. Holmes, eds., Elsevier Sci. Publ. (1988), p. 321.Google Scholar
  26. 26.
    S. Nemat-Nasser and M. Obata, Trans. ASME J. Appl. Mech.,55, 24 (1988).CrossRefGoogle Scholar
  27. 27.
    D. Krajcinovic and D. Sumarac, Trans. ASME J. Appl. Mech.,56, 51 (1989).CrossRefGoogle Scholar
  28. 28.
    J. L. Chaboche, Trans. ASME J. Appl. Mech.,55, 59 (1988).CrossRefGoogle Scholar
  29. 29.
    V. A. Skripnyak and E. G. Skripnyak, in: New Models and Numerical Codes for Shock Wave Processes in Condensed Media, 1997, AWE HUNTING BRAE, Oxford, UK (1997), p. 33.Google Scholar
  30. 30.
    Physical Constants: Handbook, N. A. Babichev, N. A. Babushkin [in Russian], I. S. Grigor'ev, and A. M. Bratkovskii, eds., Energoizdat, Moscow (1991), 1232 pp.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. G. Skripnyak

There are no affiliations available

Personalised recommendations