Skip to main content

The development of spaceflight experiments withArabidopsis as a model system in gravitropism studies

Abstract

Experiments withArabidopsis have been developed for spaceflight studies in the European Space Agency's Blorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants ofArabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate smallArabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions forArabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.

This is a preview of subscription content, access via your institution.

Abbreviations

LED:

light emitting diode

STS:

Space Transportation System

WT:

wild-type

References

  1. Briarty, LG., Maher, E.P. andIversen, T.-H. 1995. Growth, differentiation and development ofArabidopsis thaliana under microgravity conditions.In C. Mattok, ed., Biorack on Spacelab IML-1, European Space Agency, Noordwijk, The Netherlands, pp. 141–154.

    Google Scholar 

  2. Brillouet, C. andBrinckmann, E. 1997. Biorack on three Shutte-to-Mir missions. Microgravity News10: 1–7.

    Google Scholar 

  3. Brillouet, C., Brinckmann, E. andStavros, E.L. 1995. An overview on the operation and results of the Biorack experiments on the IML-1 mission.In C. Mattok, ed., Biorack on Spacelab IML-1, European Space Agency, Noordwijk, The Netherlands, pp. 5–19.

    Google Scholar 

  4. Caspar, T. andPickard, B.G. 1989. Gravitropism by a starchless mutant ofArabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177: 185–197.

    PubMed  CAS  Article  Google Scholar 

  5. Dutcher, F.R., Hess, E.L. andHalstead, T.W. 1994. Progress in plant research in space. Adv. Space Res.14: 159–171.

    PubMed  CAS  Article  Google Scholar 

  6. Kiss, J.Z., Guisinger, M.M., Miller, A.J. andStackhouse, K.S. 1997. Reduced gravitropism in hypocotyls of starch-deficient mutants ofArabidopsis. Plant Cell Physiol.38: 518–525.

    PubMed  CAS  Google Scholar 

  7. Kiss, J.Z., Hertel, R. andSack, F.D. 1989. Amyloplasts are necessary for full gravitropic sensitivity in roots ofArabidopsis thaliana. Planta177: 198–206.

    PubMed  CAS  Article  Google Scholar 

  8. Kiss, J.Z., Katembe, W.J. andEdelmann, R.E. 1998. Gravitropism and development of wild-type and starch-deficient mutants ofArabidopsis during spaceflight. Physiol. Plant.102: 493–502.

    PubMed  CAS  Article  Google Scholar 

  9. Kiss, J.Z. andSack, F.D. 1989. Reduced gravitropic sensitivity in roots of a starch-deficient mutant ofNicotiana sylvestris. Planta180: 123–130.

    PubMed  CAS  Article  Google Scholar 

  10. Kiss, J.Z., Wright, J.B. andCaspar, T. 1996. Gravitropism in roots of intermediate-starch mutants ofArabidopsis. Physiol. Plant.97: 237–244.

    PubMed  CAS  Article  Google Scholar 

  11. Krikorian, A.D. andLevine, H.G. 1991. Development and growth in space.In F.C. Steward, ed., Plant Physiology: A Treatise, vol. 10, Academic Press, Orlando, pp. 491–555.

    Google Scholar 

  12. Legú, V., Yu, F., Driss-École, D. andPerbal, G. 1996. Effects of gravitropic stress on the development of the primary root of lentil seedlings grown in space. J. Biotech.47: 129–135.

    Article  Google Scholar 

  13. Manieri, P., Brinckmann, E. andBrillouet, C. 1996. The Biorack facility and its performance during the IML-2 Spacelab mission. J. Biotech.47: 71–82.

    CAS  Article  Google Scholar 

  14. Manieri, P. andGenzel, P. 1995. The Biorack facility and its performance during the IML-1 mission.In C. Mattok, ed., Biorack on Spacelab IML-1, European Space Agency, Noordwijk, The Netherlands, pp. 21–32.

    Google Scholar 

  15. Perbal, G. andDriss-École, D. 1994. Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML 1 mission of Spacelab Physiol. Plant.90: 313–318.

    PubMed  CAS  Article  Google Scholar 

  16. Perbal, G., Driss-École D., Rutin, J. andSallé, G. 1987. Graviperception of lentil seedling roots grown in space (Spacehab D1 Mission). Physiol. Plant.70: 119–126.

    PubMed  CAS  Article  Google Scholar 

  17. Sack, F.D. 1997. Plastids and gravitropic sensing. Planta203: S63-S68.

    PubMed  CAS  Article  Google Scholar 

  18. Salisbury, F.B. 1993. Gravitropism: changing ideas. Horticult. Rev.15: 233–278.

    Google Scholar 

  19. Salisbury, F.B., Gitelson, J.I. andLisovsky, G.M. 1997. Bios-3: Siberian experiments in bioregenerative life support. Biosci.47: 575–585.

    CAS  Article  Google Scholar 

  20. Schaefer, R.L., Jahns, G.C. andReiss-Bubenheim, D. 1993. Plant response to the microgravity environment of space.In P.M. Gresshoff, ed., Plant Responses to the Environment. C.R.C. Press, Boca Raton, Florida, pp. 59–70.

    Google Scholar 

  21. Staves, M.P., Wayne, R. andLeopold, A.C. 1995. Detection of gravity-induced polarity of cytoplasmic streaming inChara. Protoplasma188: 38–48.

    PubMed  CAS  Article  Google Scholar 

  22. Suge, H. 1996. Plants in Space Biology. Institute of Genetic Ecology, Tohoku University, Sendai, Japan.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Z. Kiss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jira Katembe, W., Edelmann, R.E., Brinckmann, E. et al. The development of spaceflight experiments withArabidopsis as a model system in gravitropism studies. J. Plant Res. 111, 463–470 (1998). https://doi.org/10.1007/BF02507812

Download citation

Key words

  • Arabidopsis
  • Gravitropism
  • Microgravity
  • Spaceflight hardware
  • Space Shuttle
  • Statolith