Journal of Plant Research

, 111:541 | Cite as

Inhibition of the formation of adventitious roots on cucumber hypocotyls by the fractions and methoxybenzylglutamine from xylem sap of squash root

  • Shinobu Satoh
  • Takeshi Kuroha
  • Takashi Wakahoi
  • Yoshinobu Inouye
Original Articles


In studies of the functions of roots in the development of aboveground organs, the butanol fraction of xylem sap collected from squash root was found to have inhibitory activity against the formation of adventitious roots on the hypocotyls of cucumber in a culture of shoot cutting. The inhibitory activity was fractionated with reverse phase column chromatographies, and an inhibitory fraction was recovered with a single peak of absorbance at 280 nm, which contained a novel amino acid,N 5-(4-methoxyphenyl) methyl-l-glutamine (methoxybenzylglutamine) as a major component (Inouyeet al. 1998). Chemically synthesized methoxybenzylglutamine (5 mM) inhibited the formation of adventitious roots and also inhibited the growth of first leaf and cotyledons in a culture of shoot cuttings. On the basis of the results obtained, discussed is possible regulation of the developmental events on the aboveground organs by the roots through xylem sap.

Key words

Adventitious root Cucumber (Cucumis sativusInhibition Methoxybenzylglutamine [N5-(4-Methoxyphenyl)methyl-l-glutamine] 


MS medium

Murashige and Skoog's medium


standard deviation


  1. Bangerth, F. 1994. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta194: 439–442.CrossRefGoogle Scholar
  2. Basu, R.N., Bose, T.K., Roy, B.N. andMukhopadhyay, A. 1969. Auxin synergists in rooting of cuttings. Physiol. Plant.22: 649–652.CrossRefGoogle Scholar
  3. Beveridge, C.A., Murfet, I.C., Kerhoas, L., Sotta, B., Miginiac, E. andRameau, C. 1997. The shoot controls zeatin riboside export from pea roots-evidence from the branching mutant rms4. Plant J.11: 339–345.CrossRefGoogle Scholar
  4. Biles, C.L. andAbeles, F.B. (1991). Xylem sap proteins. Plant Physiol.96: 597–601.PubMedGoogle Scholar
  5. Campbell, J.A., Loveys, B.R., Lee, V.W.K. andStrother, S. 1995. Growth-inhibiting properties of xylem exudate fromVitis vinifera. Aust. J. Plant Physiol.22: 7–13.CrossRefGoogle Scholar
  6. Chailakhyan, M.K. andKhryanin, V.N. 1978. Effect of growth regulators and role of roots in sex expression in spinach. Planta142: 207–210.CrossRefGoogle Scholar
  7. Clarkson, S.T. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol.31: 239–298.CrossRefGoogle Scholar
  8. Else, M.A., Hall, K.C., Arnold, G.M., Davies, W.J. andJackson, M.B. 1995. Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol.107: 377–384.PubMedGoogle Scholar
  9. Friedman, R., Levin, N. andAltman A. 1986. Presence and identification of polyamines in xylem and phloem exudates of plants. Plant Physiol.82: 1154–1157.PubMedGoogle Scholar
  10. Heide, O.M. 1965. Interaction of temperature, auxins, and kinins in the regeneration ability ofBegonia leaf cuttings. Physiol. Plant.18: 891–920.CrossRefGoogle Scholar
  11. Hemberg, T. 1951. Rooting experiments with hypocotyles ofPhaseolus vulgaris L. Physiol. Plant.4: 358–369.CrossRefGoogle Scholar
  12. Inouye, Y., Wakahoi, T. and Satoh, S. 1998.N 5-(4-methoxyphenyl)methyl-l-glutamine in xylem sap from squash root. Phytochemistry, in press.Google Scholar
  13. Kinet, J.M., Lejeune, P. andBernier, G. 1993. Shoot-root interactions during floral transition: a possible role for cytokinins. Env. Exp. Bot.33: 459–469.CrossRefGoogle Scholar
  14. Koyama, M., Tsujizaki, Y. andSakamura, S. 1973. New amides from buckwheat seeds (Fagopyrum esculentum Moench). Agr. Biol. Chem.37: 2749–2753.Google Scholar
  15. Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melooliveira, R. andCoruzzi, G.M. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.47: 569–593.PubMedCrossRefGoogle Scholar
  16. Larsen, L.M., Olsen, O., Pedersen, L.H. andSørensen, H. 1984.N 5-(4-hydroxybenzyl)glutamine, 4-hydroxybenzylamine and 4-hydroxybenzylglucosinolate inSinapsis species. Phytochemistry23: 895–896.CrossRefGoogle Scholar
  17. Liang, J., Zhang, J. andWong, M.H. 1997. How do roots control xylem sap ABA concentration in response to soil drying? Plant Cell Physiol.38: 10–16.Google Scholar
  18. Libbert, E. 1956. Untersuchungen über die physiologie der adventivwurzelbildung. II. Die korrelative beeinflussung der adventivwurzelbildung durch andere organe, insbesondere durch die wurzel. Planta48: 157–189.CrossRefGoogle Scholar
  19. McDaniel, C.N. 1996. Developmental physiology of floral initiation inNicotiana tabacum L. J. Exp. Bot.47: 465–475.Google Scholar
  20. Mensualisodi, A., Panizza, M. andTognoni, F. 1995. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regulation17: 205–212.CrossRefGoogle Scholar
  21. Mitsuhashi, M., Shibaoka, H. andShimokoriyama, M. 1969a. Morphological and physiological characterization of IAA-less-sensitive and IAA-sensitive phases in rooting ofAzukia cuttings. Plant Cell Physiol.10: 867–874.Google Scholar
  22. Mitsuhashi, M., Shibaoka, H. andShimokoriyama, M. (1969b. Portulal: a rooting promoting substance inPortulaca leaves. Plant Cell Physiol.10: 715–723.Google Scholar
  23. Murashige, T. andSkoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant.15: 473–497.CrossRefGoogle Scholar
  24. Noodén, L.D., Singh, S. andLetham, D.S. (1990). Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol.93: 33–39.PubMedGoogle Scholar
  25. Satoh, S. 1996. Inhibition of flowering of cucumber grafted on rooted squash stock. Physiol. Plant.97: 440–444.CrossRefGoogle Scholar
  26. Satoh, S., Iizuka, C., Kikuchi, A., Nakamura, N. andFujii, T. 1992. Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol.33: 841–847.Google Scholar
  27. Shibaoka, H. 1971. Effects of indoleacetic,p-chlorophenoxyisobutyric and 2, 4, 6-trichlorophenoxyacetic acids on three phases of rooting inAzukia cuttings. Plant Cell Physiol.12: 193–200.Google Scholar
  28. Schurr, U. andSchulze, E.-D. 1995. The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.). Plant Cell Environ.18: 409–420.CrossRefGoogle Scholar
  29. Soejima, H., Sugiyama, T. andIshihara, K. 1992. Changes in cytokinin activities and mass spectrometric analysis of cytokinins in root exudates of rice plant (Oryza sativa L.). Plant Physiol.100: 1724–1729.PubMedCrossRefGoogle Scholar
  30. Temple, S.J., Vance, C.P. andGantt, J.S. 1998. Glutamate synthase and nitrogen assimilation. Trends in Plant Science3: 51–56.CrossRefGoogle Scholar
  31. Torrey, J.G. 1959. A chemical inhibitor of auxin-induced lateral root initiation in roots ofPisum. Physiol. Plant.12: 873–887.CrossRefGoogle Scholar
  32. Went, F.W. 1939. The dual effect of auxin on root formation. Amer. J. Bot.26: 24–29.CrossRefGoogle Scholar
  33. Zornoza, P., Gonzalez, M., Serrano, S. andCarpena, O. 1996. Inter-varietal differences in xylem exudate composition and growth under contrasting forms of N supply in cucumber. Plant Soil178: 311–317.CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Shinobu Satoh
    • 1
  • Takeshi Kuroha
    • 1
  • Takashi Wakahoi
    • 2
  • Yoshinobu Inouye
    • 2
  1. 1.Institute of Biological SciencesUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Department of ChemistryUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations