Il Nuovo Cimento C

, Volume 15, Issue 1, pp 111–114 | Cite as

On the relationship between the gradient and the bulk Richardson number for the atmospheric surface layer

  • N. M. Zoumakis
Note Brevi

Summary

Semi-empirical formulations which have been proposed to describe the wind and potential temperature profiles are used to derive relationships between the gradient Richardson number, Ri, the finite-difference layer Richardson number, Rib, the surface layer Richardson number, Ris, and the bulk Richardson number,B, through the atmospheric surface layer. The theoretical analysis for stable conditions indicates that Ri (z 3)=Rib, wherez 3=(z 2z 1)/ln(z 2/z 1), andz 2;z 1=upper and lower levels at which temperature and wind speed are specified. It is also found that, during stable conditions, the wind profile power law exponent,p, is computed at the heightz 3, instead of the widely used geometric mean height,z m, between top (z 2) and bottom (z 1) of the layer considered.

PACS 92.60

Meteorology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Golder:Boundary-Layer Meteorol.,3, 47 (1972).CrossRefADSGoogle Scholar
  2. [2]
    N. M. Zoumakis andA. G. Kelessis:Nuovo Cimento C,14, 587 (1991).Google Scholar
  3. [3]
    J. S. Irwin andF. S. Binkowski:Atmos. Environ.,15, 1091 (1981).CrossRefGoogle Scholar
  4. [4]
    F. S. Binkowski:Atmos. Environ.,9, 453 (1975).CrossRefGoogle Scholar
  5. [5]
    E. H. Barker andT. L. Baxter:J. Appl. Meteorol.,14, 620 (1975).CrossRefADSGoogle Scholar
  6. [6]
    J. Y. Ku, S. T. Rao andK. S. Rao:Atmos. Environ.,21, 201 (1987).CrossRefGoogle Scholar
  7. [7]
    J. F. Louis:Boundary-Layer Meteorol.,17, 187 (1979).CrossRefADSGoogle Scholar
  8. [8]
    Y. Delage:Boundary-Layer Meteorol.,43, 365 (1988).CrossRefADSGoogle Scholar
  9. [9]
    D. W. Byun:J. Appl. Meteorol.,29, 652 (1990).CrossRefADSGoogle Scholar
  10. [10]
    N. M. Zoumakis andA. G. Kelessis:The dependence of the bulk Richardson number on stability in the surface layer, to be published inBoundary-Layer Meteorol.Google Scholar
  11. [11]
    H. Lettau andB. Davidson:Exploring the Atmosphere's Firts Mile (Pergamon Press, Inc., New York, N.Y., 1957).Google Scholar
  12. [12]
    M. Segal andR. A. Pielke:J. Appl. Meteorol.,27, 174 (1988).CrossRefADSGoogle Scholar
  13. [13]
    R. R. Draxler:Atmos. Environ.,13, 1559 (1979).CrossRefGoogle Scholar
  14. [14]
    N. M. Zoumakis andA. G. Kelessis:On the theoretical variation of the Monin-Obukhov stability parameter as a function of the bulk Richardson number, submitted toJ. Appl. Meteorol.Google Scholar
  15. [15]
    J. A. Businger, J. C. Wyngaard, Y. Izumi andE. F. Bradley:J. Atmos. Sci.,28, 181 (1971).CrossRefADSGoogle Scholar
  16. [16]
    N. M. Zoumakis andA. G. Kelessis:Boundary-Layer Meteorol.,55, 199 (1991).CrossRefADSGoogle Scholar
  17. [17]
    C. H. Huang:Atmos. Environ.,13, 453 (1979).CrossRefADSGoogle Scholar
  18. [18]
    J. S. Irwin:Atmos. Environ.,13, 191 (1979).CrossRefGoogle Scholar
  19. [19]
    L. Sedefian:J. Appl. Meteorol.,19, 488 (1980).CrossRefADSGoogle Scholar
  20. [20]
    H. A. Panofsky andB. Prasad:Int. J. Air Water Pollut.,9, 419 (1965).Google Scholar
  21. [21]
    H. A. Panofsky andJ. A. Dutton:Atmospheric Turbulence (Wiley and Sons, 1983), p. 397.Google Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • N. M. Zoumakis
    • 1
  1. 1.Laboratory of Atmospheric PhysicsTechnological Education Institute (T.E.I.)ThessalonikiGreece

Personalised recommendations