Il Nuovo Cimento C

, Volume 2, Issue 1, pp 63–87 | Cite as

Insolation signatures of quaternary climatic changes

  • A. L. Berger


From a set of simple trigonometrical formulae allowing the computation of long-term variations of the Earth's orbital elements, midmonth daily insolations have been computed for each 10-deg latitude and, by steps of 1000 y, for one million years before present and one hundred thousand years after present. The deviations from today values and especially from mean values computed over the past 106 y have been graphically reproduced for 60° N latitude which is thought to be one of the most sensitive latitudes as far as glacial-interglacial sequences of the Quaternary period are concerned. From these data, some specific features, called insolation signatures, of the insolation pattern are found to be significantly related to well-established climatic changes, like the 125 000 YBP integlacial, the 70000 YBP persistent-cooling trend and the 20000 YBP glacial maximum. Mathematical techniques of data analysis, like harmonic analysis and principal-component analysis, have been used to statistically improve the validity of the relationship that has been found between glaciation extent, mainly their triggering, and April to October insolations.


Insolation Summer Insolation Year Before Present Spring Equinox Quaternary Climatic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


A partir de formules trigonométriques simples permettant le calcul des variations á longues périodes des éléments de l'orbite de la Terre, les insolations journalières de la mi-mois ont été calculées pour chaque latitude, de 10 en 10 degrés. Ce calcul a été effectué pour le dernier million d'années et pour les prochains 100000 ans, par pas de 1000 ans. Les écarts aux valeurs actuelles et principalement aux valeurs moyennes calculées sur le dernier million d'années ont été reproduites graphiquement pour 60° N, probablement une des latitudes les plus sensibles en ce qui concerne l'alternance des glaciaires et interglaciaires du Quaternaire. A partir de l'analyse de ces données, on s'aperçoit que des caractéristiques spécifiques du champ d'insolation, appellées signatures, semblent significativement reliées aux changements climatiques les mieux connus, tels que l'interglaciaire de 125000 ans BP, le refroidissement persistant de 70000 ans BP et l'avance glaciaire maximale de 20000 ans BP.


Da una serie di semplici formule trigonometriche che permettono il calcolo delle variazioni a lungo termine degli elementi orbitali della Terra, si sono calcolate le insolazioni giornaliere a metà mese per ogni 10 gradi di latitudine, a passi di 1000 anni, per un milione di anni passati e per centomila anni futuri. Le deviazioni dai valori di oggi e specialmente dai valori medi calcolati nei passati 106 anni sono state riprodotte graficamente per la latitudine di 60° N che è ritenuta una delle latitudini più sensibili per quanto riguarda le sequenze glaciali-interglaciali del periodo Quaternario. Da questi dati, alcuni aspetti specifici, chiamati segni di insolazione, dell'andamento di insolazione appaiono essere connessi in modo significativo a ben stabiliti cambiamenti climatici, come i 125000 YBP interglaciali, la tendenza al raffreddamento persistente a 70000 YBP e il massimo glaciale a 20000 YBP. Sono state usate tecniche matematiche di analisi dei dati come l'analisi armonica e quella dei componenti principali, per migliorare statisticamente la validità delle relazioni trovate tra ampiezza di glaciazione, soprattutto del suo innesco, e le insolazioni da aprila a ottobre.


Пз системя простях тритяонметрических бормул, позоляйших вяуислитй долтогочняе измения элементов эемноя орбитя, бяли вячислехя среднемесячняе еъедневняе инсоляцнн для каъдоя широтя, кратной десяти градоцам, с шагом в 1000 лет от одного миллиона лет до настояшего момента и до ста тисяч лет после настояшего момента. Грабически изобраъени отклонения от сегодняшних значехий и особенно от средних значений виисленнях за последние 106 лет, для широты 60° N, которая сяитается наиболее чуствителйной широтой в отношении ледниковыш—межледниковых черелований четвертичного периода. Из этих данны получено, что некоторые характерные особенности, называемые инсолясионными сигнатурами, инсоляционной диаграммы связаны с хоршо устанпвленными климаическими изменениями, лодобными межледниковому периоду 125000 УВР, пеиоду устойчмвого похолодания 70000 УБР и максимуму оледнения 20000 УВР, Исполязуетср матемаическая техника анализа данных, подобная гармонческому анализу и анаизу гиавных компонент, чтобы уточнитя спраесливостя соотншения, котое было получено между стелеленыя оледененения, главным образом начлом оледеним, и инсоляшиями в пеиод с апереля по октября.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. Berger:Ann. Soc. Sci. Bruxelles,89, 69 (1975).Google Scholar
  2. (2).
    A. Berger:Astron. Astrophys.,51, 127 (1976).ADSGoogle Scholar
  3. (3).
    A. Berger:Celestial Mechanics,15, 53 (1977).CrossRefADSGoogle Scholar
  4. (4).
    J. D. Hays, J. Imbrie andN. J. Shackleton:Science,194, 1121 (1976).ADSGoogle Scholar
  5. (5).
    A. Berger:Nature,269, 44 (1977).CrossRefADSGoogle Scholar
  6. (6).
    M. M. Milankovitch:Canon of Insolation and the Ice-Age Problem. Beograd, Köninglich Serbische Akademie. English translation by the Israel Program for Scientific Translation and published for the U. S. Department of Commerce and the National Science Foundation (Washington, D. C., (1941), 484 p.Google Scholar
  7. (7).
    A. Berger:Quat. Res.,9, 139 (1978).CrossRefGoogle Scholar
  8. (8).
    A. D. Vernekar:Meteorol. Monogr.,12, No. 34, 21 p.+tables (1972).Google Scholar
  9. (9).
    A. Berger:Palaeogeogr. Palaeooclimatol. Palaeoecol.,21, 227 (1977).CrossRefGoogle Scholar
  10. (10).
    E. Bernard:Acad. R. Sci. Outre-Mer (Bruxelles), Cl. Sci. Nat. Med., Nouvelle Série XII,1, 232 p. (1962).Google Scholar
  11. (11).
    G. J. Kukla:Nature,253, 600 (1975).CrossRefGoogle Scholar
  12. (12).
    G. J. Kukla:Recent changes in snow and ice, inClimatic Change, edited byJ. Gribbin (Cambridge, 1978), p. 114.Google Scholar
  13. (13).
    A. Berger:Bull. Soc. Belge Geol. Paleontol. Hydrol.,87, 9 (1978).Google Scholar
  14. (14).
    CLIMAP Project Members:Science,191, 1131 (1976).ADSGoogle Scholar
  15. (15).
    A. McIntyre, N. G. Kipp, A. W. H. Be, Th. C. Kellogg, J. V. Gardner, W. Prell andW. F. Ruddiman:Glacial North Atlantic 18000 years ago: CLIMAP reconstruction, inInvestigation of Late Quaternary Paleoceanography and Paleoclimatology, edited byR. M. Cline andJ. D. Hays, Geological Society of America, memoir 145 (1976), p. 43.Google Scholar
  16. (16).
    W. L. Gates:Science,191, 1138 (1976).ADSGoogle Scholar
  17. (17).
    W. Sellers:Mon. Weather Rev.,104, 233 (1976).CrossRefGoogle Scholar
  18. (18).
    W. M. Washington, B. Otto-Bliesmer andG. Williamson:January and July simulation experiments with the 2.5° latitude-longitude version of the NCAR General Circulation Model. NCAR Technical Note-123+STR, Vol.1 and2, July 1977, National Center for Atmospheric Research, Boulder, Colo., 39 and 61 p. (1977).Google Scholar
  19. (19).
    A. Berger:A simple algorithm to compute long-term variations of daily or monthly insolation, Institute of Astronomy and Geophysics, Catholic University of Louvain, Contribution 18 (1978).Google Scholar
  20. (20).
    A. Berger:Journ. Atmos. Sci.,35, 2362 (1978).CrossRefADSGoogle Scholar
  21. (21).
    J. Morley andJ. D. Hays:Calibrating ice volume changes to variations in the Earth's orbit: A precise time-scale for the Brunhes, preprint (1979).Google Scholar
  22. (22).
    N. J. Shackleton andN. D. Opdyke:Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239, late Pliocene to latest Pleistocene, inInvestigation of Late Quaternary Paleoceanography and Paleoclimatology, edited byR. M. Cline andJ. D. Hays, Geological Society of America, Memoir 145 (1976), p. 449.Google Scholar
  23. (23).
    W. S. Broecker, D. L. Thurber, J. Goddard, T. Ku, R. K. Matthews andK. J. Mesolella:Science,159, 297 (1968).CrossRefADSGoogle Scholar
  24. (24).
    N. J. Shackleton andR. K. Matthews:Nature,268, 618 (1977).CrossRefGoogle Scholar
  25. (25).
    W. Dansgaard, S. J. Johnsen, H. E. Clausen andC. C. Langway:Climatic record revealed by the Camp Century ice core, inThe Late Cenozoic Glacial Age, edited byK. K. Turekian (New Haven, Conn. 1971), p. 37.Google Scholar
  26. (26).
    C. Sancetta, J. Imbrie andN. G. Kipp:Quat. Res.,3, 110 (1973).CrossRefGoogle Scholar
  27. (27).
    J. Guiot andA. Berger:Techniques d'analyse de données en pollution de l'air (optimisation d'un réseau et étude de la relation entre variables météorologiques et concentration), Institute of Astronomy and Geophysics Catholic University of Louvain-la_Neuve, Scientific Report 1978/5.Google Scholar

Copyright information

© Società Italiana di Fisica 1979

Authors and Affiliations

  • A. L. Berger
    • 1
  1. 1.Institut d'Astronomie et de Géophysique George LemaîtreUniversité CatholiqueLouvain-La-Neuve

Personalised recommendations