Journal of Plant Research

, Volume 111, Issue 1, pp 73–85 | Cite as

Growth, anatomy and morphology of the mesocotyl and the growth of appendages of the wild oat (Avena fatua L.) seedling

  • M. V. S. Raju
  • T. A. Steeves
Original Articles


Morphological and histological studies were made on the mesocotyl and the emergence of seedlings of a nondormant strain (CS40) of wild oats (Avena fatua L.). The elongation of the mesocotyl was primarily responsible for the emergence of seedlings from deeper levels of soil. The mesocotyl of the seedling is here interpreted as the hypocotyl. The functionally suctorial scutellum together with coleoptile constitutes the first cotyledon and the first true-leaf is regarded as the second cotyledon. The development of tillers from scutellar and first-leaf buds depends on the depth at which level the seeds (caryopses) germinated and the seedlings emerged above the soil surface. The first-leaf axillary buds, regradless of depths, develop into dominant tillers. The scutellar buds, especially at greater depths, remain inhibited. At shallower levels, however, they develop into tillers. The scutellar buds, at deeper levels, behave as reserve ramets which feature adds to the success of the species as a weed in the agricultural prairies.

Key words

Avena fatua Mesocotyl Scutellum Wild oats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arber, A. 1934. The Gramineae: A Study of Cereal, Bamboo and Grass. Cambridge University Press, London.Google Scholar
  2. Avery, G.S. 1930. Comparative anatomy and morphology of embryos and seedlings of maize, oats, and wheat. Bot. Gaz.89: 1–39.CrossRefGoogle Scholar
  3. Banting, J.D. 1966a. Studies on the persistence ofAvena fatua. Can. J. Plant Sci.46: 129–140.Google Scholar
  4. Banting, J.D. 1966b. Factors affecting the persistence ofAvena fatua. Can. J. Plant Sci.46: 469–478.CrossRefGoogle Scholar
  5. Boyd, L. 1932. Monocotylous seedlings: Morphological studies in the post-seminal development of the embryo. Trans. Bot. Soc. Edin.31: 1–224.Google Scholar
  6. Boyd, L. andAvery, G.S. 1936. Grass seedling anatomy: The first internode ofAvena andTriticum. Bot. Gaz.97: 765–779.CrossRefGoogle Scholar
  7. Brown, W.V. 1960. The morphology of the grass embryo. Phytomorphology10: 215–223.Google Scholar
  8. Brown, W.V. 1965. The grass embryo: A rebuttal. Phytomorphology15: 274–284.Google Scholar
  9. Eames, A.J. 1961. Morphology of the Angiosperms. McGraw-Hill, New York.Google Scholar
  10. Esau, K. 1977. Anatomy of Seed Plants. 2 ed. John Wiley and Sons, New York.Google Scholar
  11. Goodwin, R.H. 1941. On the inhibition of the first internode ofAvena by light. Amer. J. Bot.28: 325–332.CrossRefGoogle Scholar
  12. Goodwin, R.H. 1942. On the development of xylary elements in the first internode ofAvena in dark and light. Amer. J. Bot.29: 818–828.CrossRefGoogle Scholar
  13. Jensen, W.A. 1962. Botanical Histochemistry. W.H. Freeman Company, San Francisco.Google Scholar
  14. Johansen, D.A. 1940. Plant Microtechnique. McGraw-Hill, New York.Google Scholar
  15. Kaltofen, H., Neubert, K. andSchrader, A. 1984. Welche Teile der Keimpflanzen von Gramineen können sich unmittelbar nach der Keimung varlängern? Arch Acker u Pflanzenbau u Bodenkund Berlin28: 723–733.Google Scholar
  16. McCall, M.A. 1934. Developmental anatomy and homologies in wheat. J. Agri. Res.48: 283–321.Google Scholar
  17. Mer, C.L. 1953. An examination of the factors affecting variability in the growth of the mesocotyl and coleoptile of etiolatedAvena seedlings. Ann. Bot. NS17: 569–578.Google Scholar
  18. Naylor, J.M. andJana, S. 1976. Genetic adaptation for seed dormancy inAvena fatua. Can. J. Bot.54: 306–312.CrossRefGoogle Scholar
  19. Negbi, M. andKoller, D. 1962. Homologies in the grass embryo: A reevaluation. Phytomorphology12: 289–296.Google Scholar
  20. Negbi, M. andSargent, J. 1986. The scutellum ofAvena: A structure to maximize exploitation of endosperm reserves. Bot. J. Linn. Soc.93: 247–258.Google Scholar
  21. O'Brien, T.P. andThimann, K.V. 1965. Histological studies on the coleoptile. I. Tissue and cell types in the coleoptile tip. Amer. J. Bot.52: 910–918.CrossRefGoogle Scholar
  22. Pickering, J.S. andRaju, M.V.S. 1996. Wild-oat (Avena fatua L.) seed-germination and seedling-emergence from different depths of sterilized and non-sterilized soil. Phytomorphology46: 213–220.Google Scholar
  23. Raju, M.V.S. 1990. The wild oat inflorescence and seed: anatomy, development and morphology. Canadian Plains Research Center, University of Regina, Regina, Canada, pp. 1–183.Google Scholar
  24. Raju, M.V.S., Hsiao, A.I. andMcIntyre, G.I. 1986. Seed dormancy inAvena fatua. III. The effect of mechanical injury on the growth and development of the root and scutellum. Bot. Gaz.147: 443–452.CrossRefGoogle Scholar
  25. Raju, M.V.S., Walther, A. andQuick, W.A. 1988. Growth and development of embryo parts during the germination of caryopses of the wild oat (Avena fatua L.). Bot. Mag. Tokyo101: 9–23.CrossRefGoogle Scholar
  26. Rao, D.V. andRaju, M.V.S. 1985. Radial elongation of the epidermal cells of scutellum during caryopsis germination of wild oats (Avena fatua). Can. J. Bot.63: 1789–1793.CrossRefGoogle Scholar
  27. Reeder, J.R. 1957. The embryo in grass systematics. Amer. J. Bot.44: 756–768.CrossRefGoogle Scholar
  28. Shuma, J.M. andRaju, M.V.S. 1993. Is the wild oat embryo monocotylous? Bot. Mag. Tokyo104: 15–23.CrossRefGoogle Scholar
  29. Simpson, G.M. 1978. Metabolic regulation of dormancy in seeds-A case history of the wild oat (Avena fatua).In M. Clutter, ed., Dormancy and Developmental Arrest. Academic Press, New York, pp. 167–220.Google Scholar
  30. Simpson, G.M. 1990. Seed Dormancy in Grasses. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  31. Tucker, S.C. 1957. Ontogeny of the etiolated seedling mesocotyl ofZea mays. Bot Gaz.118: 160–174.CrossRefGoogle Scholar
  32. Worsdell, W.C. 1916. The morphology of the monocotyledonous embryo and of that of the grass in particular. Ann Bot.30: 509–524.Google Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  1. 1.Department of BiologyUniversity of ReginaReginaCanada
  2. 2.Department of BiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations