Advertisement

Semiparametric spatio-temporal covariance models with the ARMA temporal margin

  • Chunsheng Ma
Spatio-temporal Model

Abstract

Starting from a purely spatial variogram, this paper derives a class of semiparametric spatio-temporal covariance models that are stationary in time but not necessarily stationary in space. In particular, we obtain spatio-temporal covariance models with the continuous-time autoregressive and moving average (ARMA) temporal margin and long-range dependent spatial margin.

Key words and phrases

Autoregressive and moving average covariance intrinsically stationary long-range dependence stationary variogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, H. (1954).Tables of Integral Transforms, Vol. I, McGraw Hill, New York.Google Scholar
  2. Berg, C., Christensen, J. P. R. and Ressel, P. (1984).Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer-Verlag, New York.Google Scholar
  3. Besag, J. E. (1972). On the correlation structure of some two-dimensional stationary process,Biometrika,59, 43–48.MATHMathSciNetCrossRefGoogle Scholar
  4. Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes,Journal of the Royal Statistical Society, Series B,63, 823–841.MATHMathSciNetCrossRefGoogle Scholar
  5. Chilès, J.-P. and Delfiner, P. (1999).Geostatistics: Modeling Spatial Uncertainty, Wiley, New York.Google Scholar
  6. Cressie, N. (1993).Statistics for Spatial Data, revised ed., Wiley, New York.MATHGoogle Scholar
  7. Cressie, N. and Huang, H. C. (1999). Classes of non-separable, spatio-temporal stationary covariance functions,Journal of the American Statistical Association,94, 1330–1340 (Correction:ibid. (2001).96, p. 784).MATHMathSciNetCrossRefGoogle Scholar
  8. De Iaco, S., Myers, D. E. and Posa, D. (2002). Nonseparable space-time covariance models: some parametric families,Mathematical Geology,34, 23–42.MATHMathSciNetCrossRefGoogle Scholar
  9. Doukhan, P., Oppenheim, G. and Taqqu, M. S. (eds) (2003).Theory and Applications of Long-range Dependence, Birkhäuser Boston, Boston.MATHGoogle Scholar
  10. Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data,Journal of the American Statistical Association,97, 590–600.MATHMathSciNetCrossRefGoogle Scholar
  11. Handcock, M. S. and Wallis, J. R. (1994). An approach to statistical spatial-temporal modeling of meteorological fields (with discussion),Journal of the American Statistical Association,89, 368–390.MATHMathSciNetCrossRefGoogle Scholar
  12. Hartfield, M. I. and Gunst, R. F. (2003). Identification of model components for a class of continuous spatiotemporal models,Journal of Agricultural, Biological, and Environmental Statistics,8, 105–121.CrossRefGoogle Scholar
  13. Haslett, J. and Raftery, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion),Applied Statistics,38, 1–50.CrossRefGoogle Scholar
  14. Johansen, S. (1966). An application of extreme point methods to the representation of infinitely divisible distributions.Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,5, 304–316.MATHMathSciNetCrossRefGoogle Scholar
  15. Ma, C. (2003a). Families of spatio-temporal stationary covariance models,Journal of Statistical Planning and Inference,116, 489–501.MATHMathSciNetCrossRefGoogle Scholar
  16. Ma, C. (2003b). Spatio-temporal stationary covariance models,Journal of Multivariate Analysis,86, 97–107.MATHMathSciNetCrossRefGoogle Scholar
  17. Ma, C. (2003c). Power-law correlations and other models with long-range dependence on a lattice,Journal of Applied Probability,40, 690–703.MATHMathSciNetCrossRefGoogle Scholar
  18. Ma, C. (2003d). Long memory continuous-time covariance models,Journal of Applied Probability,40, 1133–1146.MATHMathSciNetCrossRefGoogle Scholar
  19. Ma, C. (2005). Linear combinations of space-time covariance functions and variograms,IEEE Transactions on Signal Processing,53, 857–864.MathSciNetCrossRefGoogle Scholar
  20. Sampson, P. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure,Journal of the American Statistical Association,87, 108–119.CrossRefGoogle Scholar
  21. Schoenberg, I. J. (1938). Metric spaces and completely monotone functions,Annals of Mathematics,39, 811–841.MATHMathSciNetCrossRefGoogle Scholar
  22. Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal data,Journal of the Royal Statistical Society, Series B, Statistical Methodology,63, 673–689.MATHMathSciNetCrossRefGoogle Scholar
  23. Whittle, P. (1954). On stationary processes in the plane,Biometrika,41, 434–449.MATHMathSciNetCrossRefGoogle Scholar
  24. Whittle, P. (1956). On the variation of yield variance with plot size,Biometrika,43, 337–343.MATHMathSciNetCrossRefGoogle Scholar
  25. Whittle, P. (1962). Topographic correlation, power-law covariance functions, and diffusion,Biometrika,49, 305–314.MATHMathSciNetCrossRefGoogle Scholar
  26. Yaglom, A. M. (1957). Some classes of random fields in n-dimensional space, related to stationary random processes,Theory of Probability and Its Applications,2, 273–320.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 2005

Authors and Affiliations

  • Chunsheng Ma
    • 1
  1. 1.Department of Mathematics and StatisticsWichita State UniversityWichitaUSA

Personalised recommendations