Subclasses of generalized inverses of matrices

  • Masaaki Sibuya


Structure of allg-inverses of a matrix in a weak sense is shown. Characterizations of main subclasses ofg-inverses are investigated thoroughly. The dualities among subclasses and the relation betweeng-inverses and projections are stressed. The Gauss-Markov theorem reduces to a duality of two types ofg-inverses


Orthogonal Projection Canonical Form Equivalent Condition Generalize Inverse Weak Sense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cline, R. E. (1964). Note on the generalized inverse of the product of matrices,SIAM Review,6, 56–58.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Goldman, A. J. and Zelen, M. (1964). Weak generalized inverses and minimum variance linear unbiased estimation,Jour. Res. NBS,68 B, 151–172.MathSciNetGoogle Scholar
  3. [3]
    Hearon, J. Z. and Evans, J. W. (1968). On Spaces and maps of generalized inverses,Jour. Res. NBC,72 B, 103–107.MathSciNetGoogle Scholar
  4. [4]
    Mitra, S. K. (1968). On a generalized inverse of a matrix and applications,Sankhya, Ser. A,30, 107–114.MATHMathSciNetGoogle Scholar
  5. [5]
    Penrose, R. (1955). A generalized inverses for matrices,Proc. Camb. Phil. Soc.,51, 406–413.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Rao, C. R. (1962). A note on a generalized inverse of a matrix with applications to problems in mathematical statistics,J. Roy., Stat. Soc., B,24, 152–158.MATHGoogle Scholar
  7. [7]
    Rao, C. R. (1967). Calculus of generalized inverses of matrices, Part I—General theory.Sankhya, Ser. A,29, 317–342.MATHMathSciNetGoogle Scholar
  8. [8]
    Rohde, C. A. (1966). Some results on generalized inverses,SIAM Rev.,8, 201–205.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Sibuya, M. (1970). Generalized inverses of mappings,Research Memorandum No. 35,Inst. Statist. Math.Google Scholar
  10. [10]
    Tewarson, R. P. (1969). On some representations of generalized inverses,SIAM Review,11, 272–276.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Zlobec, S. (1970). An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix,SIAM Rev.,12, 132–134.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1970

Authors and Affiliations

  • Masaaki Sibuya
    • 1
  1. 1.Scientific CenterI.B.M. JapanJapan

Personalised recommendations