Skip to main content
Log in

A model of stratified entrainment using vortex persistence

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A new model is proposed for the entrainment rate by vortices across stratified interfaces. In the model, different entrainment regimes are distinguished by the conventional parameters Richardson, Reynolds, and Schmidt number as well as a new parameter, the “vortex persistence”. Vortex persistence is defined as the number of rotations a vortex makes during the time it moves its own diameter with respect to the interface. It is further proposed that the concept of vortex persistence is important whenever a vortex is near any kind of surface, either stratified or solid. The model is in accord with most field and laboratory observations in a variety of stratified and bounded flows, including measurements of wall heat transfer and vortex formation in starting jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morton B.R., Taylor, G.I. and Turner, J.S., Turbulent gravitational convection from maintained and instantaneous sources.Proc. Roy. Soc. A 234, (1956) 1–23.

    MATH  MathSciNet  ADS  Google Scholar 

  2. Turner, J.S., The influence of molecular diffusivity on turbulent entrainmen across a density interface.J. Fluid Mech. 33 (1968) 639–656.

    Article  ADS  Google Scholar 

  3. Turner, J.S., Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows.J. Fluid Mech. 173 (1986) 431–471.

    Article  ADS  Google Scholar 

  4. Piat, J.-F. and Hopfinger, E.J., A boundary layer topped by a density interface.J. Fluid Mech. 113 (1981) 411–432.

    Article  ADS  Google Scholar 

  5. Fernando, H.J.S., Turbulent mixing in stratified fluids.Ann. Rev. Fluid Mech. 23 (1991) 455–493.

    Article  ADS  Google Scholar 

  6. Breidenthal, R.E., Entrainment at thin stratified interfaces: The effects of Schmidt, Richardson, and Reynolds numbers.Phys. Fluids A 4(10) (1992) 2141–2144.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Broadwell, J.E. and Mungal, M.G., Large-scale structures and molecular mixing.Phys. of Fluids A 3(5) Part 2 (1991) 1193–1206.

    Article  ADS  Google Scholar 

  8. Cotel, A.J. and Breidenthal, R.E., Laboratory experiments of a jet impinging on a stratified interface. In:Proc. Seventh Int. Sympos. Flow Visualization, Seattle, (1995) pp. 461–466.

  9. Schneider, H-H., Laboratory experiments to simulate the jet-induced erosion of pycnoclines in lakes. In:Proc. Second International Symp. on Stratified Flows, Trondheim, Norwegian Institute of Technology (1980) pp. 697–706.

  10. Breidenthal, R.E., Entrainment and mixing in stratified flows.Appl. Mech. Rev 47(6) (1993) S108-S112.

    Article  Google Scholar 

  11. Cotel, A.J. and Breidenthal, R.E., Persistence theory of stratified entrainment.Preprints Fourth Int. Sym. on Stratified Flows, Grenoble, France (1994).

  12. Cotel, A.J., Entrainment and detrainment of a jet impinging on a stratified interface. Ph.D. Thesis, University of Washington (1995).

  13. Linden, P.F., The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment.J. Fluid Mech. 60 (1973) 467–480.

    Article  ADS  Google Scholar 

  14. Cotel, A.J., Gjestvang, J.A., Ramkhelawan, N.N. and Breidenthal, R.E., Laboratory experiments of a jet impinging on a stratified interface.Exp. Fluids. (1997) in press.

  15. Baines, W.D., Entrainment by a plume or jet at a density interface.J. Fluid Mech. 68 (1975) 309–320.

    Article  ADS  Google Scholar 

  16. Kumagai, M., Turbulent buoyant convection from a source in a confined two-layer region.J. Fluid Mech. 147 (1984) 105–131.

    Article  ADS  Google Scholar 

  17. Dai, Z., Tseng, L.-K. and Faeth, G.M., Structure of round, fully-developed, buoyant turbulent plumes.J. Fluid Mech. 116 (1994) 409–417.

    Google Scholar 

  18. Dai, Z., Tseng, L.-K. and Faeth, G.M., Velocity statistics of round, fully-developed, buoyant turbulent plumes.J. Heat Transfer 117 (1995) 138–145.

    Google Scholar 

  19. Mungal, M.G., Karasso, P.S. and Lozano, A., The visible structure of turbulent jet diffusion flames: Large-scale organization and flame tip oscillation.Comb. Sci. and Tech. 76 (1991) 165–185.

    Google Scholar 

  20. Yoda, M., Hesselink, L. and Mungal M.G., Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet.J. Fluid Mech. 279 (1994) 313–350.

    Article  ADS  Google Scholar 

  21. Higbie, R., The rate of absorption of a pure gas into a still liquid during short periods of exposure.Trans. Amer. Inst. Chem. Engr. 35 (1935) 365–389.

    Google Scholar 

  22. Leveque, M.A., Les lois de la transmission de chaleur par convection.Annual Mines 13 (1928) 201–239.

    Google Scholar 

  23. Colburn, A.P., A method of correlating forced convection heat transfer data and a comparison with fluid friction.Trans. American Inst. Chem. Engr. 29 (1933) 173–210.

    Google Scholar 

  24. Schlicting, H.,Boundary Layer Theory, 6th ed., McGraw-Hill, New York, (1960) p. 300.

    Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M.,Fluid Mechanics. Pergamon Press, Oxford (1959) p. 122.

    MATH  Google Scholar 

  26. Edwards, A. and Furber, B.N. The influence of free stream turbulence on heat transfer by convection from an isolated region of a plane surface in parallel flow.Proc. Inst. Mech. Engr. 170 (1956) 941.

    Google Scholar 

  27. Kestin, J., Maeden, P.F., and Wang, H.E., Influence of turbulence on the transfer of heat from plates with and without a pressure gradient.Int. J. Heat Mass Trans. 3 (1961) 133–154.

    Article  Google Scholar 

  28. Dowling, D.R., Buonadonna, V.R. and Breidenthal, R.E., Temperature transients in a cylindrical pressure vessel filled from vacuum.J. Thermophys. Heat Trans. 4(4) (1990) 504–511.

    Article  ADS  Google Scholar 

  29. Gharib, M., Rambod, E., Dabiri, D, Shiota, T. and Sahn, D., Pulsatile heart flow: A universal time scale. In:Int. Conf. Experimental Fluid Mech., Torino, Italy (1994).

  30. Turner, J.S.,Buoyancy Effects in Fluids. Cambridge University Press, Cambridge (1973), p. 291.

    MATH  Google Scholar 

  31. Turner, J.S., A note on wind mixing at the seasonal thermocline.Deep-Sea Research 16 (1969) 297–300 (Suppl.).

    Google Scholar 

  32. Dennan, K.L. and Miyake, M., Upper layer modification at Ocean Station Papa: Observations and simulation.J. Phys. Oceanogr. 3(2) (1973) 185–196.

    Article  ADS  Google Scholar 

  33. Halpern, D., Observations of the deepening of the wind-mixed layer in the northeast Pacific Ocean.J. Phys. Oceanogr. 4 (1974) 454–466.

    Article  MathSciNet  ADS  Google Scholar 

  34. Kullenberg, G., Entrainment velocity in natural stratified vertical shear flow.Estuary and Coastal Marine Science 5 (1977) 329–338.

    Article  Google Scholar 

  35. Price, J.F., Mooers, C.N.K. and Van Leer, J.C., Observation and simulation of storm-induced mixed-layer deepening.J. Phys. Oceanogr. 8 (1978) 582–99.

    Article  ADS  Google Scholar 

  36. Dillon, T.M. and Powell, T.M., Observations of a surface mixed layer.Deep-Sea Research 26a, (1979) 915–932.

    Article  Google Scholar 

  37. Buch, E., On entrainment and vertical mixing in stably stratified fjord. In:Proc. Second Int. Symposium on Stratified Flows, Trondheim, Norwegian Institute of Technology (1980) pp. 750–762.

  38. Moore, M.J. and Long, R.R., An experimental investigation of turbulent stratified shearing flow.J. Fluid Mech. 49 (1971) 635–55.

    Article  ADS  Google Scholar 

  39. Pedersen, F.B.,A Monograph on Turbulent Entrainment and Friction in Two-Layer Stratified Flow. Series Paper No. 25, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Copenhagen (1980).

    Google Scholar 

  40. Jones, I.S. and Mulhearn, P.J., The influence of external turbulence on sheared interfaces.Geophys. Astrophys. Fluid Dyn. 24 (1983) 49–62.

    ADS  Google Scholar 

  41. Monismith, S., An experimental study of the upwelling response of stratified reservoirs to surface shear stress.J. Fluid Mech. 49 (1986) 635–655.

    Google Scholar 

  42. Narimousa, S. and Fernando, H.J.S., On the sheared density interface of an entraining stratified fluid.J. Fluid Mech. 174 (1987) 1–22.

    Article  ADS  Google Scholar 

  43. De Silva, I.P.D., Montenegro, L., Mavrikos, N. and Fernando, H.J.S., Experiments on Kelvin-Helmholz instabilities in stratified flows.Bull. Am. Phys. Soc. 38(12) (1993) 2254.

    Google Scholar 

  44. Fernando, H.J.S., Turbulent mixing in the presence of a stabilizing buoyancy flux. In: List, E.J. and Jurka, G.H. (eds),Proc. Third Int. Symposium Stratified Flows, Caltech (1987) p. 447.

  45. Kit, E., Berent, E. and Vajda, M., Vertical mixing induced by wind and a rotation screen in a stratified fluid in a channel.J. Hydraulic Res. 18 (1980) 35–57.

    Article  Google Scholar 

  46. Kranenburg, C., Wind-induced entrainment in a stably stratified fluid.J. Fluid Mech. 145 (1984) 253–273.

    Article  ADS  Google Scholar 

  47. Wu, J., Wind-induced entrainment across a stable density interface.J. Fluid Mech. 61 (1973) 275–287.

    Article  ADS  Google Scholar 

  48. Nokes, R.I., On the entrainment rate across a density interface.J. Fluid Mech. 188 (1988) 185–204.

    Article  ADS  Google Scholar 

  49. Narimousa, S., Long, R.R. and Kitaigorodskii, S.A., Entrainment due to turbulent shear flow at the interface of a stably stratified fluid.Tellus 38A (1986) 76–87.

    Article  ADS  Google Scholar 

  50. Deardorff, J.W. and Willis, G.E., Dependence of mixed-layer entrainment on shear stress and velocity jump.J. Fluid Mech. 115 (1982) 123–149.

    Article  ADS  Google Scholar 

  51. Deardorff, J.W. and Yoon, S.-C., On the use of an annulus to study mixed-layer entrainment.J. Fluid Mech. 142 (1984) 97–120.

    Article  ADS  Google Scholar 

  52. Elias, F., Der Warmeubergang einer Geheizten Platte an Stromende Luft. Abhdlg. Aerodynamik Institute T. H. Aachen 9, and 1929.ZAMM 9 (1930), 434–453; and10, 1–14.

    Google Scholar 

  53. Fernando, H.J.S. and Long, R.R., The growth of a shear-free mixed layer in a linearly stratified fluid.Phys. Fluids 28(10) (1985) 2999–3003.

    Article  MathSciNet  ADS  Google Scholar 

  54. Shy, S.S., A chemically reacting, turbulent stratified interface. Ph.D. Thesis, University of Washington (1990).

  55. Hannoun, I.A. and List, E.J., Turbulent mixing at a shear-free density interface.J. Fluid Mech. 189 (1988) 211–234.

    Article  ADS  Google Scholar 

  56. Hopfinger, E.J. and Toly, J.-A., Spatially decaying turbulence and its relation to mixing across density interfaces.J. Fluid Mech. 78 (1976) 155–175.

    Article  ADS  Google Scholar 

  57. Kantha, L.H., Phillips, O.M. and Azad, R.S., On turbulent entrainment at a stable density interface.J. Fluid Mech. 79 (1977) 753–768.

    Article  ADS  Google Scholar 

  58. Kato, H. and Phillips, O.M., On the penetration of a turbulent layer into stratified fluid.J. Fluid Mech. 37 (1969) 643–655.

    Article  ADS  Google Scholar 

  59. Chai, A., Experimental investigation of mixing processes in a two-layer stratified flow in an annulus. Ph.D. Thesis, Tel Aviv University, Israel (1989).

    Google Scholar 

  60. Noh, Y. and Fernando, H.J.S., The role of molecular diffusion in the deepening of the mixed layer.Dyn. Atmos. Oceans 17 (1993) 187–215.

    Article  ADS  Google Scholar 

  61. Sullivan, G.D. and List, E.J., On mixing and transport at a shear density interface.J. Fluid Mech. 273 (1994) 213–239.

    Article  ADS  Google Scholar 

  62. Ivey, G.N. and Imberger, J., On the nature of turbulence in a stratified fluid. Part 1: The energetics of mixing.J. Phys. Oceanogr. 21 (1991) 650–658.

    Article  ADS  Google Scholar 

  63. Imberger, J., Mixing and transport in a stratified lake.Preprints of the Fourth Int. Symp. on Stratified Flows, Grenoble 1 (1994).

  64. Rehmann, C.R. and Koseff, J.R., Mixing efficiency of decaying grid turbulence in a stratified fluid.Preprints of the Fourth Int. Symp. on Stratified Flows, Grenoble 2 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotel, A.J., Breidenthal, R.E. A model of stratified entrainment using vortex persistence. Appl. Sci. Res. 57, 349–366 (1996). https://doi.org/10.1007/BF02506069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506069

Key words

Navigation