Skip to main content
Log in

Nonlinear analysis of near-wall turbulence time series

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

We present the results of the nonlinear analysis of a near-wall turbulence signal, measured using a Laser Doppler Anemometer. Despite being preliminary in part, the results highlight some interesting aspects of the dynamics of coherent structures. Careful reconstruction of the dynamics from the scalar time series highlight particular phases of the bursting cycle, corresponding to the VITA detections, immersed in the overall high-dimension dynamics: the possibility to distinguish these trajectories in the embedding space provides indications for conditional sampling techniques on the reconstructed attractor. The application of nonlinear prediction to a system of high-dimension produces forecasts of rapidly decreasing quality over time, with no consequences for practical applications. Much more interesting instead is the analysis of the forecast errors for very short forecast intervals, where we observed a greater difficulty to predict the beginning of coherent structure instability probably due to the quasi-random forcing of the outer flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, H.D.J., Brown, R., Sidorovich, J.J. and Tsimring, L.S., The analysis of observed chaotic data in physical systems.Rev. Mod. Phys. 65(4) (1993) 1331–1392.

    Article  ADS  Google Scholar 

  2. Aranson, I.S., Gaponov-Grekhov, A.V. and Rabinovich, M.I., The onset and spatial development of turbulence in flow systems.Physica D 33 (1988) 1–20.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Atten, P., Caputo, J.G., Malraison, B. and Gagne, Y., Détermination de dimension d'attracteurs pour différents écoulements.J. Méc. théor. appl. Numéro spécial (1984) 133–156.

  4. Aubry, N., Holmes, P., Lumley, J.L. and Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer.J. Fluid Mech. 192 (1988) 115–173.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Badii, R., Broggi, B., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A. and Rubio, M.A., Dimension increase in filtered chaotic signals.Phys Rev. Lett. 60(11) (1988) 979–982.

    Article  ADS  Google Scholar 

  6. Bergé, P., Pomean, Y. and Vidal, Ch.,Order within Chaos. Wiley, Chichester (1987).

    MATH  Google Scholar 

  7. Berkooz, G., Holmes, P., Lumley, J.L., Aubry, N. and Stone, E., Observations regarding “Coherence and chaos in a model of turbulent boundary layer” by X. Zhou and L. Sirovich. (Phys. Fluids a, 4 (1992) 2855).Phys. Fluids 6(4) (1994) 1574–1578.

    Article  MathSciNet  ADS  Google Scholar 

  8. Bonetti, M., Meynart, R., Boon, J.P. and Olivari, D., Chaotic dynamics in a periodically excited air jet.Phys. Rev. Lett. 55 (1985) 492–495.

    Article  ADS  Google Scholar 

  9. Brandstater, A. and Swinney, H.L., Strange attractors in weakly turbulent Couette-Taylor flow.Phys. Rev. A. 35(5) (1987) 2207–2220.

    Article  ADS  Google Scholar 

  10. Brandstater, A., Swinney, H.L. and Chapman, G.T., Characterizing turbulent channel flow. In: Mayer-Kress, G. (ed.),Dimension and Entropies in Chaotic Systems: Qualification of Complex Behavior. Springer-Verlag, Berlin (1986) pp. 150–157.

    Google Scholar 

  11. Butera, L., Porporato, A., Ridolfi, L. and Sordo, S., Autocorrelation and related quantities of the longitudinal turbulence velocity component. An experimental investigation in a water flow in a smooth pipe. In:Proceedings 2nd Int. Conference on Exp. Fluid Mech., Turin, Italy (1994), pp. 339–348.

  12. Butera, L., Ridolfi, L. and Sordo, S., On the hypothesis of self-similarity for velocity distribution in turbulent flows.Excerpta 8 (1994) 63–94.

    Google Scholar 

  13. Buzug, Th. and Pfister, P., Optimal delay time and embedding dimension for delay time coordinates by analysis of the global static and local dynamical behavior of strange attractors.Phys. Rev. A 45(10) (1992) 7073–7084.

    Article  ADS  Google Scholar 

  14. Buzug, Th. and Pfister, P., Comparison of algorithms calculating optimal embedding parameters for delay time co-ordinates.Physica D 58 (1992) 127–132.

    Article  ADS  Google Scholar 

  15. Buzug, Th., Reimers, T. and Pfister, P., Optimal reconstruction of strange attractors from purely geometrical arguments.Europhys. Lett. 13 (1990) 605–610.

    ADS  Google Scholar 

  16. Casdagli, M., Nonlinear prediction of chaotic time series.Physica D 35 (1989) 335–356.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Casdagli, M., Eubank, S., Farmer, J.D. and Gibson, J., State space reconstruction in the presence of noise.Physica D 51 (1991) 52–98.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Constantin, P., Foias, C., Manley, O.P. and Temam, R., Determining modes and fractal dimension of turbulent flows.J. Fluid Mech. 150 (1985) 427–440.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Cross, M.C. and Hohenberg, P.C., Pattern formation outside of equilibrium.Rev. Mod. Phys. 65(3) (1993) 851–1112.

    Article  ADS  Google Scholar 

  20. Durst, F., Jovanovic, J. and Sender, J., LDA measurements in the near-wall region of a turbulent pipe flow.J. Fluid Mech. 295 (1995) 305–335.

    Article  ADS  Google Scholar 

  21. Eckmann, J.-P. and Ruelle, D., Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems.Physica D 56 (1992) 185–187.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Eden, A., Foias, C., Nikolaenko, B. and Temam, R.,Exponential Attractors for Dissipative Evolution Equations. Wiley, Chichester (1994).

    MATH  Google Scholar 

  23. Farmer, J.D. and Sidorovich, J.J., Predicting chaotic time series.Phys. Rev. Lett. 59(8) (1987) 845–848.

    Article  MathSciNet  ADS  Google Scholar 

  24. Farmer, J.D. and Sidorovich, J.J., Exploiting chaos to predict the future and reduce noise. In: Lee, Y.C. (ed.),Evolution, Learning and Cognition. World Science, River Edge, NJ (1988) pp. 277–330.

    Google Scholar 

  25. Gad-el-Hak, M., Interactive control of turbulent boundary layers: A futuristic overview.AIAA Journal 32(9) (1994) 1753–1765.

    Article  ADS  Google Scholar 

  26. Gaster, M., The nonlinear phase of wave growth leading to chaos and breakdown to turbulence in a boundary layer as an example of an open system.Proc. R. Soc. Lond. A 430 (1990) 3–24.

    Article  ADS  Google Scholar 

  27. Grappin, R. and Léorat, J., Lyapunov exponents and the dimension of periodic incompressible Navier-Stokes flows: Numerical measurements.J. Fluid Mech. 222 (1991) 61–94.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Grassberger, P., An optimized box-assisted algorithm for fractal dimensions.Phys. Lett. A 148 (1991) 63–68.

    Article  MathSciNet  ADS  Google Scholar 

  29. Grassberger, P. and Procaccia, I., Characterization of strange attractors.Phys. Rev. Lett. 50 (1983) 346–349.

    Article  MathSciNet  ADS  Google Scholar 

  30. Grassberger, P., Schreiber, Th. and Schaffrath, C., Nonlinear time sequence analysis.Internat. J. Bifurcation and Chaos 1(3) (1991) 521–547.

    Article  MATH  MathSciNet  Google Scholar 

  31. Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C. and Schreiber, T., On noise reduction methods for chaotic data.Chaos 3(2) (1993) 127–141.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Hamilton, J.M., Kim, J. and Waleffe, F., Regeneration mechanisms of near-wall turbulence structures.J. Fluid Mech. 287 (1995) 317–348.

    Article  MATH  ADS  Google Scholar 

  33. Healey, J.J., A dynamical systems approach to the early stages of boundary-layer transition.J. Fluid Mech. 255 (1993) 667–681.

    Article  MathSciNet  ADS  Google Scholar 

  34. Healey, J.J., Time series analysis of physical systems possessing homoclinicity.Physica D 80 (1995) 48–60.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Holmes, P., Can dynamical systems approach turbulence? In: Lumley, J.L. (ed.),Proc. Whither Turbulence? Turbulence at the Crossroads. Lecture Notes in Applied Physics, Vol. 357. Springer-Verlag, New York (1990) pp. 197–249 and 306–309.

    Google Scholar 

  36. Huang, Y. and Huang, H., On the transition to turbulence in pipe flow.Physica D 37 (1989) 153–159.

    Article  ADS  Google Scholar 

  37. Jimènez, J and Moin, P., The minimal flow unit in near-wall turbulence.J. Fluid Mech. 225 (1991) 213–240.

    Article  MATH  ADS  Google Scholar 

  38. Keefe, L., Moin, P. and Kim, J., The dimension of attractors underlying periodic turbulent Poiseuille flow.J. Fluid Mech. 242 (1992) 1–29.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Lichaber, A. and Maurer, J., A Rayleigh-Bérnard experiment: Helium in a small box. In: Riste, T. (ed.),Nonlinear Phenomena at Phase Transitions and Instabilities. Plenum, New York (1981) pp. 259–267.

    Google Scholar 

  40. Luchik, T.S. and Tiederman, W.G., Timescale and structure of ejections and bursts in turbulent channel flows.J. Fluid Mech. 174 (1987) 529–552.

    Article  ADS  Google Scholar 

  41. Manneville, P., From chaos to turbulence in fluid dynamics. In: Szemplinska-Stupnicka, W., and Troger, H. (eds),Engineering Applications of Dynamics of Chaos. Springer-Verlag, Vienna, New York (1991) pp. 67–135.

    Google Scholar 

  42. Mullin, T. and Price, T.J., An experimental observation of chaos arising from the interaction of steady and time-dependent flows.Nature 340 (1989) 294–296.

    Article  ADS  Google Scholar 

  43. Neremberg, M.A.H. and Essex, C., Correlation dimension and systematic geometric effects.Phys. Rev. A 42(12) (1990) 7065–7075.

    Article  MathSciNet  ADS  Google Scholar 

  44. Newell, C., Rand, A. and Russell, D., Turbulent transport and the random occurrence of coherent events.Physica D 33 (1988) 281–303.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S., Geometry from a time series.Phys. Rev. Lett. 45 (1980) 712–716.

    Article  ADS  Google Scholar 

  46. Pfister, G., Schmidt, H., Cliffe, K.A. and Mullin, T., Bifurcation phenomena in Taylor-Couette flow in a very short anulus.J. Fluid Mech. 191 (1988) 1–18.

    Article  MathSciNet  ADS  Google Scholar 

  47. Porporato, A., Searching for low-dimension elements in near-wall turbulence. Ph.D. Thesis, Department of Hydraulics, Transport and Civil Infrastructure, Polytechnic of Turin (1996) [in Italian].

  48. Porporato, A. and Ridolfi, L., Analysis of randomly sampled data using fuzzy and nonlinear techniques. In:Proceedings 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (1996) pp. 36.3.1–6.

  49. Porporato, A. and Ridolfi, L., Nonlinear analysis of river flow time sequences.Water Resources Res. 33(6) (1996) 1353–1367.

    Article  ADS  Google Scholar 

  50. Rapp, P.E., Albano, A.M., Schmah, T.I. and Farwell, L.A., Filtered noise can mimic low-dimensional chaotic attractor.Phys. Rev. E 47(4) (1993) 2289–2297.

    Article  ADS  Google Scholar 

  51. Robinson, S.K., Coherent motions in the turbulent boundary layer.Ann. Rev. Fluid Mech. 23 (1991) 601–624.

    Article  ADS  Google Scholar 

  52. Sanghi, S. and Aubry, N., Mode interaction models for near-wall turbulence.J. Fluid Mech. 247 (1993) 455–488.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Sauer, T., Time series prediction using delay co-ordinate embedding. In: Weigend, A.S. and Gershenfeld, N.A. (eds),Time Series Prediction, SFI Studies in the Sciences of Complexity, Proc., Vol. XV. Addison-Wesley, Reading, MA (1993) pp. 175–194.

    Google Scholar 

  54. Schreiber, Th. and Grassberger, P., A simple noise-reduction method for real data.Phys. Lett. A 160 (1991) 411–418.

    Article  MathSciNet  ADS  Google Scholar 

  55. Schuster, H.G.,Deterministic Chaos, 3rd ed. Physik Verlag, Weinheim (1995).

    MATH  Google Scholar 

  56. Sieber, M., Experiments on the attractor-dimension for turbulent pipe flow.Phys. Lett. A 122(9) (1987) 467–470.

    Article  ADS  Google Scholar 

  57. Sirovich, L. and Rodriguez, J.D., Coherent structures and chaos: A model problem.Phys. Lett. A 120 (1987) 211–214.

    Article  MathSciNet  ADS  Google Scholar 

  58. Sirovich, L. and Zhou, X., Dynamical model of wall-bounded turbulence.Phys. Rev. Letters 72(3) (1994) 340–343.

    Article  ADS  Google Scholar 

  59. Sirovich, L. and Zhou, X., Reply to “Observations regarding “Coherence and chaos in a model of turbulent boundary layer” by X. Zhou and L. Sirovich (Phys. Fluids A, 4 (1992) 2855)”.Phys. Fluids 6(4) (1994) 1579–1582.

    Article  MathSciNet  ADS  Google Scholar 

  60. Sreenivasan, K.R. and Ramshankar, R., Transition intermittency in open flows, and intermittency routes to chaos.Physica D 23 (1986) 246–258.

    Article  ADS  Google Scholar 

  61. Sugihara, G. and May, R.M., Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature 344 (1990) 734–741.

    Article  ADS  Google Scholar 

  62. Takens, F.,Detecting Strange Attractors in Turbulence. Lectures Notes in Mathematics, Vol. 898. Springer-Verlag, Berlin (1981).

    Google Scholar 

  63. Temam, R.,Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Berlin (1988).

    MATH  Google Scholar 

  64. Tennekes, H. and Lumley, J.L.,A First Course in Turbulence. The MIT Press, Cambridge, MA (1972).

    MATH  Google Scholar 

  65. Theiler, J., Spurious dimension from correlation algorithms applied to limited time-series data.Phys. Rev. A 34(3) (1986) 2427–2432.

    Article  ADS  Google Scholar 

  66. Tsonis, A.A.,Chaos. From Theory to Applications. Plenum Press, New York (1992).

    Google Scholar 

  67. Tsonis, A.A., Triantafyllou, G.N. and Elsner, J.B., Searching for determinism in observed data: A review of the issue involved.Nonlinear Processes in Geophysics 1 (1994) 12–25.

    ADS  Google Scholar 

  68. Williams-Stuber, K. and Gharib, M., Transition from order to chaos in the wake of an airfoil.J. Fluid Mech. 213 (1990) 29–57.

    Article  MathSciNet  ADS  Google Scholar 

  69. Zhou, X. and Sirovich, L., Coherence and chaos in a model of turbulent boundary layer.Phys. Fluids A 4(12) (1992) 2855–2874.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. Zhou, J., Adrian, R.J. and Balachandar, S., Autogeneration of near-wall vortical structures in channel flow.Phys. Fluids 8(1) (1996) 288–300.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porporato, A., Ridolfi, L. Nonlinear analysis of near-wall turbulence time series. Appl. Sci. Res. 57, 235–261 (1996). https://doi.org/10.1007/BF02506062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506062

Key words

Navigation