Skip to main content
Log in

Wavelet decomposition and coherent structures eduction of low Reλ turbulent hot wire signals

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Hot wire signals obtained in grid-turbulence are processed through orthogonal wavelet transform. It is shown that using wavelet decomposition in combination with the form of scaling named Extended Self Similarity, some statistical properties of fully developed turbulence can be extended to very low Reλ flows. Furthermore, based on the wavelet decomposition, a new technique for coherent structures identification is introduced. We present results obtained in grid turbulence data at low and very low Reλ conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselmet, F., Gagne, Y., Hopfinger, E.J. and Antonia, R.A., High-order velocity structure functions in turbulent shear flows.J. Fluid Mech. 140 (1984) 63–89.

    Article  ADS  Google Scholar 

  2. Kolmogorov, A., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.C. R. Akad. Sci. SSSR 30 (1941) 301–305.

    MATH  ADS  Google Scholar 

  3. She, Z-S., Jackson, E. and Orszag, S.A., Intermittent vortex structures in homogeneous isotropic turbulence.Nature 144 (1991) 226–228.

    Google Scholar 

  4. Meneveau, C. and Sreenivasan, K.R., The multifractal nature of turbulent energy dissipation.J. Fluid Mech. 224 (1991) 429–484.

    Article  MATH  ADS  Google Scholar 

  5. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S., Extended self-similarity in turbulent flows.Phys. Rev. E 48 (1993) 29–32.

    Article  ADS  Google Scholar 

  6. Monin, A.S. and Yaglom, A.M.,Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, MA (1975).

    Google Scholar 

  7. Camussi, R., Ciliberto, S., Benzi, R. and Baudet, C., Statistical uncertainty in the structure function analysis in turbulence.Phys. Rev. E 54(4) (1997) 100–103.

    Google Scholar 

  8. Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., Chillà, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijter, J. Marchand, M., Maurer, J., Muzy, J.F., Naert, A., Noullez, A., Peijnke, J., Roux, F., Tabeling, P., van de Water, W. and Williame, H., Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity.Europh. Lett. 34(6) (1996) 411–416.

    Article  ADS  Google Scholar 

  9. Jimenez, J., Wray, A.A., Saffman, P.G. and Rogallo, R.S., The structure of intense vorticity in isotropic turbulence.J. Fluid Mech. 255 (1993) 65–90.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Kuo, A.Y.S. and Corrsin, S., Experiments on the geometry of the fine-structure regions in fully turbulent fluid.J. Fluid Mech. 56 (1972) 447–479.

    Article  ADS  Google Scholar 

  11. Cadot, O., Douady, S. and Couder, Y., Characterization of the low pressure filaments in a 3D turbulent shear flow.Phys. of Fluids 7(3) (1995) 630–635.

    Article  ADS  Google Scholar 

  12. Bonnet, J.P. and Glauser, M.N. (eds),Eddy Structure Identification in Free Turbulent Shear Flows. Kluwer Academic Publishers, Dordrecht (1990).

    MATH  Google Scholar 

  13. Bonnet, J.P. (ed.),Eddy Structure Identification. Springer-Verlag, Berlin (1996).

    MATH  Google Scholar 

  14. Farge, M., Wavelet transforms and their applications to turbulence.Annu. Rev. Fluid Mech. 24 (1992) 395–457.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Farge, M., Kevlahan, N., Perrier, V. and Goirand, E., Wavelet and turbulence.Proceedings of IEEE 84 (1996) 639–669.

    Article  Google Scholar 

  16. Vassilicos, J.C. and Kevlahan, N.K.R., The space and scale dependencies of the self-similar structure of turbulence.Proc. R. Soc. Lond. A 447 (1994) 341–363.

    Article  MATH  ADS  Google Scholar 

  17. Mallat, S., A theory for multiresolution signal decomposition: The wavelet representation,IEEE Trans. PAMI 11 (1989) 674–693 (Table 1).

    MATH  ADS  Google Scholar 

  18. Meneveau, C., Analysis of turbulence in the orthonormal wavelet representation.J. Fluid Mech. 232 (1991) 469–520.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Meneveau, C., Appendices A, B and C to CTR manuscript 120 CTR Summer Prog. (1991).

  20. Blackwelder, R.F. and Kaplan, R.E., On the wall structure of the turbulent boundary layer.J. Fluid Mech.76 (1976) 89–112.

    Article  ADS  Google Scholar 

  21. Camussi, R. and Guj, G., Experimental analysis of scaling laws in low Reλ grid-generated turbulence.Exp. in Fluids 20 (1996) 199–209.

    Article  ADS  Google Scholar 

  22. Tavoularis, S., Bennet, J.C. and Corrsin, S., Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence.J. Fluid Mech. 88 (1978) 63–69.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camussi, R., Guj, G. Wavelet decomposition and coherent structures eduction of low Reλ turbulent hot wire signals. Appl. Sci. Res. 57, 195–209 (1996). https://doi.org/10.1007/BF02506059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506059

Key words

Navigation