Skip to main content
Log in

Compressibility effects due to turbulent fluctuations

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

This paper deals with intrinsic effects of compressibility, i.e. with dilatation fluctuations in response to pressure fluctuations. Three different types of turbulent flows are considered in more detail: homogeneous turbulent shear flow, wall-bounded turbulent shear flow and shock/turbulence interaction. A survey of the present knowledge in this field, mainly based on DNS data, is given. Using the linear inviscid perturbation equations a direct link between fluctuations of dilatation and of velocity in the direction of mean shear is presented for homogeneous shear flow. This relation might form the basis for a more universal pressure-dilatation model. It is conjectured that the insignificance of intrinsic compressibility effects in wall-bounded supersonic shear flow is mainly due to the impermeability constraint of the wall. To this end, a linear stability analysis of supersonic channel flow along cooled, but permeable walls has been performed based on Coleman et al.'s [5] mean flow data. It shows an increase in the moduli of eigenfunctions related to compressibility, like pressure, and in moduli of quantities derived from eigenfunctions such as ‘pressure dilatation’ and squared dilatation. Although these results do not prove our hypothesis they provide hints in this direction. Shock/turbulence interaction is viewed as a source of compressibility. Former DNS data of Hannappel and Friedrich [10] for shock/isotropic turbulence interaction showing the effect of compressibility on the amplification of fluctuations are interpreted based on linear perturbation equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, N.A., Private communication (1997).

  2. Blaisdell, G.A., Mansour, N.N. and Reynolds, W.C., Numerical simulations of compressible homogeneous turbulence. Report No. TF-50, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1991).

  3. Blaisdell, G.A., Mansour, N.N. and Reynolds, W.C., Compressibility effects on the growth and structure of homogeneous turbulent shear flow.J. Fluid Mech. 256 (1993) 443–485.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Cambon, C., Coleman, G.N. and Mansour, N.N., Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite Mach number.J. Fluid Mech. 257 (1993) 641–665.

    Article  MATH  ADS  Google Scholar 

  5. Coleman, G.N., Kim, J. and Moser, R.D., A numerical study of turbulent supersonic isothermal-wall channel flow.J. Fluid Mech. 305 (1995), 159–183.

    Article  MATH  ADS  Google Scholar 

  6. Durbin, P.A. and Zeman, O., Rapid distortion theory for homogeneous compressed turbulence with application to modeling.J. Fluid Mech. 242 (1992) 349–370.

    Article  MATH  ADS  Google Scholar 

  7. Friedrich, R. and Hannappel, R., On the interaction of wave-like disturbances with shocks—Two idealizations of the shock/turbulence interaction problem.Acta Mechanica 4 (1994) [Suppl.] 69–77.

    Google Scholar 

  8. Guo, Y. and Adams, N.A., A numerical investigation of supersonic turbulent boundary layers with high wall temperature. InProc. CTR Summer Program, Stanford, CA (1994) pp. 245–267.

  9. Haidinger, F. and Friedrich, R., Computation of shock wave/turbulent boundary layer interactions using a two-equation model with compressibility correstions.Appl. Sci. Res. 51 (1993) 501–505.

    Article  Google Scholar 

  10. Hannappel, R. and Friedrich, R., Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence.Appl. Sci. Res. 54 (1995) 205–221.

    Article  MATH  ADS  Google Scholar 

  11. Huang, P.G., Bradshaw, P. and Coakley, T.J., Turbulence models for compressible boundary layers.AIAA J. 32 (1994) 735–740.

    MATH  ADS  Google Scholar 

  12. Huang, P.G., Coleman, G.N. and Bradshaw, P., Compressible turbulent channel flows—DNS results and modeling.J. Fluid Mech. 305 (1995) 185–218.

    Article  MATH  ADS  Google Scholar 

  13. Jacquin, L., Cambon, C. and Blin, E., Turbulence amplification by a shock wave and rapid distortion theory.Phys. Fluids A 10 (1993) 2539–2550.

    Article  MATH  ADS  Google Scholar 

  14. Kovasnay, L.S.G., Turbulence in supersonic flow.J. Aeron. Sci. 20 (1953) 657–682.

    Google Scholar 

  15. Lee, S., Lele, S.K. and Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave.J. Fluid Mech. 251 (1993) 533–562.

    Article  ADS  Google Scholar 

  16. Lee, S., Lele, S.K. and Moin, P., Corrigendum: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave.J. Fluid Mech. 264 (1994) 373–374.

    Article  Google Scholar 

  17. Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with a strong shock wave. AIAA Paper 94-0311 (1994).

  18. Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with shock waves: Effect of shock strength.J. Fluid Mech. 340 (1997) 225–247.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Lele, S.K., Compressibility effects on turbulence.Ann. Rev. Fluid Mech. 26 (1994) 211–254.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Mahesh, K., Lee, S., Lele, S.K. and Moin, P., The interaction of an isotropic field of acoustic waves with a shock wave.J. Fluid Mech. 300 (1995) 383–407.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Moore, F.K., Unsteady oblique interaction of a shock wave with a plane disturbance. NACA TN 2879 (1954).

  22. Morkovin, M.V., Effects of compressibility on turbulent flows. In:Mécanique de la Turbulence, Favre, A. (ed.), CNRS, Paris, p. 368.

  23. Morkovin, M.V., Mach number effects on free and wall turbulent structures in light of instability flow interactions. In:Studies in Turbulence, Gatski, T.B., Sarkar, S. and Speziale, C.G. (eds). Springer-Verlag, New York (1992) pp. 269–284.

    Google Scholar 

  24. Perot, B. and Moin, P., Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence.J. Fluid Mech. 295 (1995) 199–227.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Ribner, H.S., Shock-turbulence interaction and the generation of noise. NACA TN 3255 (1954).

  26. Ribner, H.S., Spectra of noise and amplified turbulence emanating from shock-turbulence interaction.AIAA J. 25 (1987) 436–442.

    Article  ADS  Google Scholar 

  27. Rotman, D., Shock wave effects on a turbulent flow.Phys. Fluids A 3 (1991) 1792–1806.

    Article  MATH  ADS  Google Scholar 

  28. Sandham, N. and Reynolds, W.C., Three-dimensional simulations of large eddies in the compressible mixing layer.J. Fluid Mech. 224 (1991) 133–158.

    Article  MATH  ADS  Google Scholar 

  29. Sarkar, S., Erlebacher, G. and Hussaini, M.Y., Compressible homogeneous shear: Simulation and modeling. In:Turbulent Shear Flows, Vol. 8, Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U. and Whitelaw, J.H. (eds). Springer-Verlag, Berlin/Heidelberg (1993) pp. 249–267.

    Google Scholar 

  30. Sarkar, S., The pressure-dilatation correlation in compressible flows.Phys. Fluids A 4 (1992) 2674–2682.

    Article  ADS  Google Scholar 

  31. Sarkar, S., The stabilizing effect of compressibility in turbulent shear flow.J. Fluid Mech. 282 (1995) 163–186.

    Article  MATH  ADS  Google Scholar 

  32. Shajii, A. and Freidberg, J.P., Theory of low Mach number compressible flow in a channel.J. Fluid Mech. 313 (1996) 131–145.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Simone, A., Etude théorétique et simulation numérique de la turbulence compressible en présence de cisaillement ou de variation de volume à grande échelle. Thèse de doctorat, Ecole Centrale de Lyon, France (1995).

    Google Scholar 

  34. Simone, A., Coleman, G.N. and Cambon, C., The effect of compressibility on turbulent shear flow: A rapid distortion theory and direct numerical simulation study.J. Fluid Mech. 330 (1997) 307–338.

    Article  MATH  ADS  Google Scholar 

  35. Speziale, C.G., Abid, R. and Mansour, N.N., Evaluation of Reynolds stress turbulence closures in compressible homogeneous shear flow.Z. angew. Math. Phys. 46 (1995) Special Issue, S717-S736.

    MATH  MathSciNet  Google Scholar 

  36. Speziale, C.G. and Xu, X.-H., Towards the development of second-order closure models for non-equilibrium turbulent flows. In:Proc. 10th Turb. Shear Flow Conf., The Pennsylvania State University, Vol. 3 (1995) pp. 23–7 to 23-12.

  37. Tennekes, H. and Lumley, J.L.,A First Course in Turbulence. MIT Press, Cambridge, MA (1972).

    MATH  Google Scholar 

  38. Thompson, P.A.,Compressible-Fluid Dynamics. McGraw-Hill, New York (1972).

    MATH  Google Scholar 

  39. Vreman, A.W., Sandham, N.D. and Luo, K.H., Compressible mixing layer growth rate and turbulence characteristics.J. Fluid Mech. 320 (1996) 235–258.

    Article  MATH  ADS  Google Scholar 

  40. Whitham, G.B.,Linear and Nonlinear Waves. John Wiley and Sons, New York (1974).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, R., Bertolotti, F.P. Compressibility effects due to turbulent fluctuations. Appl. Sci. Res. 57, 165–194 (1996). https://doi.org/10.1007/BF02506058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506058

Key words

Navigation