Annali di Matematica Pura ed Applicata

, Volume 176, Issue 1, pp 113–132 | Cite as

On some geometrical problems of paperfolding

  • J. Justin
Article
  • 42 Downloads

Keywords

Double Point Paper Sheet Geometrical Problem Rectangular Hyperbola Circular Point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliograpgy

  1. [1]
    A. Balliccioni,Coordonnées barycentriques et géometrie, Claude Hermant, Paris (1964).Google Scholar
  2. [2]
    H. BrocartT. Lemoyne,Courbes géometriques remarquables, Librairie Scientif. et Techn. A. Blanchard, Paris (1967), Tomes 1 et 2; (1970), Tome 3.Google Scholar
  3. [3]
    H. M. CundyF. C. Parry,Some cubic curves associated with a triangle, J. Geom.54 (1995), pp. 41–66.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. L. Coolidge,Treatise on Algebraic Plane Curves, Dover Publ. Inc., New York (1959).MATHGoogle Scholar
  5. [5]
    R. H. EddyR. Fritsch,The conic of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle, Mathematics Magazine,67, 3 (1994), pp. 188–205.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    E. Frigerio,Origami geometry: old and new, inProceedings of the First International Meeting of Origami Science and Technology, Ferrara,1989,H. Huzita ed., Università di Padova Italy.Google Scholar
  7. [7]
    H. Hilton,Plane Algebraic Curves, Oxford University Press, London (1920).MATHGoogle Scholar
  8. [8]
    T. Hull,On the mathematics of flat origamis, Congressus Numerantium,100 (1994), pp. 215–224.MATHMathSciNetGoogle Scholar
  9. [9]
    R. A. Johnson,Advanced Euclidean Geometry: an Elementary Treatise on the Geometry of the Triangle and the Circle, Dover Publ. Inc., New York (1960).MATHGoogle Scholar
  10. [10]
    J. Justin,Aspects mathématiques du pliage de papier, Séminaire d'informatique théorique, année 1982–83, 83–97, LIPT, CNRS-Univ. Paris. Also reprinted inProceedings of the First International Meeting of Origami Science and Technology, Ferrara, 1989,H. Huzita ed., Università di Padova, Italy.Google Scholar
  11. [11]
    J. Justin,Coniques et pliages, Plot n. 27, IREM Université d'Orléans (France), (1984), pp. 11–14.Google Scholar
  12. [12]
    J. Justin,Towards a mathematical theory of origami, inProceedings of the 2nd International Meeting of Origami Science and Scientific Origami, Otsu, Shiga, Japan, 1994,T. Kawasaki ed., Technical Report IAMI 98.6, Istituto per le Applic. della Math. e dell'Informatica, Milano, Italy.Google Scholar
  13. [13]
    T. KawasakiM. Yoshida,Crystallographic flat origamis, Mem. Fac. Sci. Kyushu Univ., Ser. A,42, 2 (1988), pp. 153–157.MATHMathSciNetGoogle Scholar
  14. [14]
    C. Kimberling,Central points and central lines in the plane of a triangle, Mathematics Magazine,67, 3 (1994), pp. 163–187.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Lalesco,La géométrie du triangle, Annales Roumaines de Mathématiques, Cahier 1, Vuibert, Paris (1952).MATHGoogle Scholar
  16. [16]
    P. Levy-Bruhl,Précis de géométrie, Collection Euclide, P.U.F., Paris (1967).MATHGoogle Scholar
  17. [17]
    E. H. Lockwood,A Book of Curves, Cambridge University Press, Cambridge (1961).MATHGoogle Scholar
  18. [18]
    J. E. Wetzel,Converses of Napoleon's Theorem, Amer. Math. Monthly,99, 1 (1992), pp. 339–351.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1999

Authors and Affiliations

  • J. Justin
    • 1
  1. 1.LIAFAParis Cedex 05(France)

Personalised recommendations