Annali di Matematica Pura ed Applicata

, Volume 179, Issue 1, pp 159–188 | Cite as

Infinitely many radial solutions to a boundary value problem in a ball

  • Anna Capietto
  • Walter Dambrosio
  • Fabio Zanolin


In this paper we are concerned with the existence and multiplicity of radial solutions to the BVP
whereB is an open ball in ℝK and u↦∇·(a(|∇u|)∇u) is a nonlinear differential operator (e.g. the plaplacian or the mean curvature operator). The function f is defined in a neighborhood of u=0 and satisfies a «sublinear»-type growth condition for u→0. We use a degree approach combined with a time-map technique. Multiplicity results are obtained also for nonlinearities of concave-convex type.


Radial Solution Nodal Property Multiplicity Result Continuation Theorem Differential Integral Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. AmbrosettiH. BrézisG. Cerami,Combined effects of concave and convex nonlinearities in some elliptic problems, J. Functional Anal.,122 (1994), pp. 519–543.MATHCrossRefGoogle Scholar
  2. [2]
    A. AmbrosettiJ. Garcia AzoreroI. Peral,Multiplicity results for some nonlinear elliptic equations, J. Functional Anal.,137 (1996), pp. 219–242.MATHCrossRefGoogle Scholar
  3. [3]
    A. AmbrosettiJ. Garcia AzoreroI. Peral,Quasilinear equations with a multiple bifurcation, Differential Integral Equations,10 (1997), pp. 37–50.MATHMathSciNetGoogle Scholar
  4. [4]
    T. BartschM. Willem,On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc.,123 (1995), pp. 3555–3561.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. J. Butler,Rapid oscillation, nonextendability and the existence of periodic solutions to second order nonlinear ordinary differential equations, J. Differential Equations,22 (1976), pp. 467–477.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. J. Butler,Periodic solutions of sublinear sceond order differential equations, J. Math. Anal. Appl.,62 (1978), pp. 676–690.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. CapiettoW. Dambrosio,Boundary value problems with sublinear conditions near zero, No-DEA,6 (1999), pp. 149–172.MATHMathSciNetGoogle Scholar
  8. [8]
    A. CapiettoJ. MawhinF. Zanolin,On the existence of two solutions with a prescribed number of zeros for a superlinear two-point boundary value problem, Topol. Methods Nonlinear Anal.,6 (1995), pp. 175–188.MATHMathSciNetGoogle Scholar
  9. [9]
    A. CastroA. Kurepa,Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc.,101 (1987), pp. 57–64.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Y. Cheng,On the existence of radial solutions of a nonlinear elliptic equation on the unit ball, Nonlinear Anal.,24 (1995), pp. 287–307.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. V. CoffmanD. F. Ulrich,On the continuation of solutions of certain nonlinear differential equations, Monatsh. Math.,71 (1967), pp. 385–392.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    W. Dambrosio,Multiple solutions of weakly-coupled systems with p-laplacian operators, Results Math.,36 (1999), pp. 34–54.MATHMathSciNetGoogle Scholar
  13. [13]
    H. DangR. ManásevichK. Schmitt,Positive radial solutions of some nonlinear partial differential equations, Math. Nachr.,186 (1997), pp. 101–113.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Dang H.K. SchmittR. Shivaji,On the number of solutions of boundary value problems involving the p-Laplacian and similar nonlinear operators, Electron. J. Differential Equations,1 (1996), pp. 1–9.MathSciNetGoogle Scholar
  15. [15]
    A. El HachimiF. De Thelin,Infinitely many radially symmetric solutions for a quasilinear elliptic problem in a ball, J. Differential Equations,128 (1996), pp. 78–102.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. J. Esteban,Multiple solutions of semilinear elliptic problems in a ball, J. Differential Equations,57 (1985), pp. 112–137.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. FranchiE. LanconelliJ. Serrin,Existence and uniqueness of nonnegative solutions of quasilinear equations inn, Adv. Math.118 (1996), pp. 177–243.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. García-HuidobroR. ManásevichK. Schmitt,Some bifurcation results for a class of p-laplacian like operators, Differential Integral Equations,10 (1997), pp. 51–66.MATHMathSciNetGoogle Scholar
  19. [19]
    M. García-HuidobroR. ManásevichK. Schmitt,Positive radial solutions of quasilinear partial differential equations on a ball, Nonlinear Anal.,35 (1999), pp. 175–190.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. García-HuidobroR. ManásevichF. Zanolin,Strongly non-linear second order ODE's with unilateral conditions, Differential Integral Equations,6 (1993), pp. 1057–1078.MathSciNetGoogle Scholar
  21. [21]
    M. García-HuidobroR. ManásevichF. Zanolin,Strongly nonlinear second order ODE's with rapidly growing terms, J. Math. Anal. Appl.,202 (1996), pp. 1–26.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. García-HuidobroR. ManásevichF. Zanolin,Infinitely many solutions for a Dirichlet problem with a non homogeneous p-Laplacian like operator in a ball, Adv. Differential Equations,2 (1997), pp. 203–230.MATHMathSciNetGoogle Scholar
  23. [23]
    M. García-HuidobroP. Ubilla,Multiplicity of solutions for a class of nonlinear second-order equations, Nonlinear Anal.,28 (1997), pp. 1509–1520.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Grillakis, Existence of nodal solutions of semilinear equations in ℝn, J. Differential Equations,85 (1990), pp. 367–400.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Z. Guo,Boundary value problems for a class of quasilinear ordinary differential equations, Differential Integral Equations,6 (1993), pp. 705–719.MATHMathSciNetGoogle Scholar
  26. [26]
    H. Jacobowitz,Periodic solutions of x′'+f(t, x)=0 via the Poincaré-Birkhoff theorem, J. Differential Equations,20 (1976), pp. 37–52, andCorrigendum, the existence of the second fixed point: a correction to “Periodic solutions of x′'+f (t, x)=0 via the Poincaré-Birkhoff theorem”, J. Differential Equations,25 (1977), pp. 148–149.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    C. K. R. T. Jones,Radial solutions of a semilinear elliptic equation at a critical exponent, Arch. Ration. Mech. Anal.,104 (1988), pp. 251–270.MATHCrossRefGoogle Scholar
  28. [28]
    M. A. Krasnosel'skiiA. I. PerovA. I. PovolotskiiP. P. Zabreiko,Plane vector fields, Academic Press, New York, 1966.Google Scholar
  29. [29]
    J. Mawhin,Topological degree methods in Nonlinear Boundary Value Problems, CBMS Series, Amer. Math. Soc., Providence, RI, 1979.MATHGoogle Scholar
  30. [30]
    V. Moroz,Solutions of superlinear at zero elliptic equations via Morse theory, Topol. Methods Nonlinear Anal.,10 (1997), pp. 387–397.MATHMathSciNetGoogle Scholar
  31. [31]
    F. I. NjokuP. OmariF. Zanolin,Multiplicity of positive radial solutions of a quasilinear elliptic problem in a ball, Adv. Differential Equations,5 (2000), pp. 1545–1570.MATHMathSciNetGoogle Scholar
  32. [32]
    P. OmariF. Zanolin,Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations,21 (1996), pp. 721–733.MATHMathSciNetGoogle Scholar
  33. [33]
    Z. Opial,Sur les périodes des solutions de l'équation différentielle x′'+g(x)=0, Ann. Polon. Math.,10 (1961), pp. 49–71.MATHMathSciNetGoogle Scholar
  34. [34]
    W. ReichelW. Walter,Radial solutions of equations and inequalities involving the p-laplacian, J. of Inequal. & Appl.,1 (1997), pp. 47–71.MATHMathSciNetGoogle Scholar
  35. [35]
    B. L. Shekhter,On existence and zeros of solutions of a nonlinear two-point boundary value problem, J. Math. Anal. Appl.,97 (1983), pp. 1–20.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. W. C. Van Groesen,Applications of natural constraints in critical point theory to boundary value problems on domains with rotation symmetry, Arch. Math.,44 (1985), pp. 171–179.MATHCrossRefGoogle Scholar
  37. [37]
    M. Willem,Minimax theorems, Birkhäuser, Boston, 1996.MATHGoogle Scholar
  38. [38]
    E. Yanagida,Sturmian theory for a class of nonlinear second-order differential equations, J. Math. Anal. Appl.,187 (1994), pp. 650–662.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 2001

Authors and Affiliations

  • Anna Capietto
    • 1
  • Walter Dambrosio
    • 1
  • Fabio Zanolin
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly

Personalised recommendations