Abstract
We present a discretization theory for a class of nonlinear evolution inequalities that encompasses time dependent monotone operator equations and parabolic variational inequalities. This discretization theory combines a backward Euler scheme for time discretization and the Galerkin method for space discretization. We include set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel to allow a nonconforming approximation of unilateral constraints. As an application we treat parabolic Signorini problems involving the p-Laplacian, where we use standard piecewise polynomial finite elements for space discretization. Without imposing any regularity assumption for the solution we establish various norm convergence results for piecewise linear as well piecewise quadratic trial functions, which in the latter case leads to a nonconforming approximation scheme.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C. Atkinson—C. R. Champion, Some boundary value problems for the equation\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\nabla } \cdot \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\nabla } \phi |\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\nabla } \phi |^N = 0.\)Q. Journ. Mech. Appl. Math.,37 (1984), pp. 401–419.
H. Attouch,Variational Convergence for Functions and Operators, Pitman, Boston (1984).
J. P. Aubin—A. Cellina,Differential Inclusions, Springer, New York (1984).
C. Baiocchi,Discretization of evolution variational inequalities, in:Partial Differential Equations and the Calculus of Variations I, Essays in Honor of E. De Giorgi (F. Colombini,A. Marino,L. Modica andS. Spagnolo, eds.), Birkhäuser, Basel (1989), pp. 59–82.
C. Baiocchi—A. Capelo,Variational and Quasivariational Inequalities, Wiley, Chichester, New York (1984).
E. Di Benedetto,Degenerate Parabolic Equations, Springer, New York (1993).
H. Brèzis,Problèmes unilatéraux, J. Math. Pures Appl.,51 (1972), pp. 1–168.
H. Brèzis,Operateurs Maximaux Monotones, North-Holland, Amsterdam (1973).
G. Chavent—J. Jaffre,Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam (1986).
P. G. Ciarlet,The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978).
R. Dautray—J. L. Lions,Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3:Evolution Problems I, Springer, Berlin, Heidelberg, New York (1992).
G. Duvaut—J. L. Lions,Inequalities in Mechanics and Physics, Springer, berlin, Heidelberg, New York (1976).
H. Gajewski—K. Gröger—K. Zacharias,Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).
R. Glowinski,Numerical Methods for Nonlinear Variational Problems, Springer, Berlin (1984).
R. Glowinski—J. L. Lions—R. Trémolières,Numerical analysis of variational inequalities, North-Holland, Amsterdam (1981).
K. Gröger,Discrete-time Galerkin methods for nonlinear evolution equations, Math. Nachr.,78 (1978), pp. 247–275.
J. Gwinner,A discretization theory for monotone semicoercive problems and finite element convergence for p-harmonic Signorini problems, Z. Angew. Math. Mech.,74 (1994). pp. 417–427.
D. L. Hill—J. M. Hill,Utilization of nonlinear diffusion solutions for n-diffusion and power-law materials, Acta Mechanica,91 (1992), pp. 193–208.
P. R. Halmos,Measure Theory, Springer, New York (1974).
E. Hewitt—K. Stromberg,Real and Abstract Analysis, Springer, Berlin (1965).
U. Hornung,A unilateral boundary value problem for unsteady waterflow in porous media in:Applied nonlinear functional analysis, variational methods and ill-posed problems, Proc. Workshop (R. Gorenflo,K. H. Hoffmann, eds.) pp. 59–94, Meth. Verf. Math. Phys., Berlin (1981).
C. Johnson,A convergence estimate for an approximation of a parabolic variational inequality, SIAM J. Numer. Anal.,13 (1976), pp. 599–606.
J. Kačur,Method of Rothe in Evolution Equations, Teubner, Leipzig (1985).
O. A. Ladyzenskaja,New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Steklov Inst. Math.,102 (1967), pp. 95–118. English transl: Trudy Math. Inst. Steklov102 (1967), pp. 85–104.
J. L. Lions,Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
G. Lippold,Error estimates for the implicit Euler approximation of an evolution inequality, Nonlinear Anal. Theory. Methods Appl.,15 (1990), pp. 1077–1089.
W. B. Liu—J. W. Barrett,Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities, Numer. Funct. Anal. Optimization, No. 9-10,16 (1995), pp. 1309–1321.
E. Magenes,On the approximation of some nonlinear evolution equations, Ric. Mat.,40 Suppl. (1991), pp. 215–240.
U. Mosco,Convergence of convex sets and of solutions of variational inequalities, Advances in Math.,3 (1969), pp. 510–585.
J. Naumann Einführung in die Theorie parabolischer Variationsungleichungen, Teubner, Leipzig (1984).
J. Nečas,Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967).
W. Oettli,Monoton-konvexe Funktionen—eine Bemerkung zum Satz von Browder-Minty, in:Advances in mathematical optimization, Pap. Dedic. F. Nožička Occas. 70. Birthday, Math. Res.45 (1988), pp. 130–136.
Y. Sonntac—C. Zalinescu,Set convergences: A survey and a classification, Set-Valued Anal. No. 1-2,2 (1994), pp. 339–356.
F. Stummel Perturbation theory for Sobolev spaces, Proc. Royal Soc. Edinburgh,73A (1974/75), pp. 5–49.
Dongming Wei,Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic problem, SIAM J. Numer. Anal.,29 (1992), pp. 484–497.
K. Yosida,Functional Analysis, 6th ed., Springer, Berlin, New York (1980)
E. Zeidler,Nonlinear Functional Analysis and its Applications, Vol. II/A:Linear Monotone Operators, Springer, Berlin, New York (1990).
E. Zeidler,Nonlinear Functional Analysis and its Applications, Vol. II/B:Nonlinear Monotone Operators Springer, Berlin, New York (1990).
A. Ženíšek,Approximations of parabolic variational inequalities, Apl. Mat.,30 (1985), pp. 11–35.
A. Ženíšek,Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximation, Academic Press, London (1990).
Author information
Authors and Affiliations
Additional information
Entrata in Redazione il 16 marzo 1998, in versione riveduta il 15 febbraio 1999.
Rights and permissions
About this article
Cite this article
Carstensen, C., Gwinner, J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Annali di Matematica pura ed applicata 177, 363–394 (1999). https://doi.org/10.1007/BF02505918
Issue Date:
DOI: https://doi.org/10.1007/BF02505918