Advertisement

The Journal of Membrane Biology

, Volume 136, Issue 2, pp 135–145 | Cite as

Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains

  • E. M. Lars Bastiaanse
  • Habo J. Jongsma
  • Arnoud van der Laarse
  • Brenda R. Takens-Kwak
Articles

Abstract

To assess whether alterations in membrane fluidity of neonatal rat heart cells modulate gap junctional conductance (g j ), we compared the effects of 2mm 1-heptanol and 20 μm 2-(methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate (A2C) in a combined fluorescence anisotropy and electrophysiological study. Both substances decreased fluorescence steady-state anisotropy (rss), as assessed with the fluorescent probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) by 9.6±1.1% (mean ±sem,n=5) and 9.8±0.6% (n=5), respectively, i.e., both substances increased bulk membrane fluidity. Double whole-cell voltage-clamp experiments showed that 2mm heptanol uncoupled cell pairs completely (n=6), whereas 20 μm A2C, which increased bulk membrane fluidity to the same extent, did not affect coupling at all (n=5).

Since gap junction channels are embedded in relatively cholesterol-rich domains of the membrane, we specifically assessed the fluidity of the cholesterol-rich domains with dehydroergosterol (DHE). Using DHE, heptanol increased rss by 14.9±3.0% (n=5), i.e., decreased cholesterol domain fluidity, whereas A2C had no effect on rss (−0.4±6.7%,n=5).

Following an increase of cellular “cholesterol” content (by loading the cells with DHE), 2mm heptanol did not uncouple cell pairs completely:g j decreased by 80±20% (range 41–95%,n=5). The decrease ing j was most probably due to a decrease in the open probability of the gap junction channels, because the unitary conductances of the channels were not changed nor was the number of channels comprising the gap junction. The sensitivity of non-junctional membrane channels to heptanol was unaltered in cholesterol-enriched myocytes.

These results indicate that the fluidity of cholesterol-rich domains is of importance to gap junctional coupling, and that heptanol decreasesg j by decreasing the fluidity of cholesterol-rich domains, rather than by increasing the bulk membrane fluidity.

Key words

Fluorescence anisotropy Voltage clamp Membrane fluidity Gap junctional conductance 1-heptanol A2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeler, G.W., McGuigan, J.A.S. 1978. Voltage clamping of multicellular myocardial preparations: Capabilities and limitations of existing methods.Prog. Biophys. Mol. Biol. 34:219–254PubMedCrossRefGoogle Scholar
  2. Beyer, E.C., Paul, D.L., Goodenough, D.A. 1987. Connexin43: A protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105:2621–2629PubMedCrossRefGoogle Scholar
  3. Burt, J.M., Spray, D.C. 1988. Single-channel events and gating behavior of the cardiac gap junction channel.Proc. Natl. Acad. Sci. USA 85:3431–3434PubMedCrossRefGoogle Scholar
  4. Burt, J.M. 1989. Uncoupling of cardiac cells by doxyl stearic acids: Specificity and mechanism of action.Am. J. Physiol. 256:C913-C924PubMedGoogle Scholar
  5. Burt, J.M., Spray, D.C. 1989. Volatile anesthetics block intercellular communication between neonatal rat myocardial cells.Circ. Res. 65:829–837PubMedGoogle Scholar
  6. Chanson, M., Bruzzone, R., Bosco, D., Meda, P. 1989. Effects ofn-alcohols on junctional coupling and amylase secretion of pancreatic acinar cells.J. Cell. Physiol. 139:147–156PubMedCrossRefGoogle Scholar
  7. De Bruijne, J., Jongsma, H.J. 1980. Membrane properties of aggregates of collagenase-dissociated rat heart cells.In: Advances in Myocardiology. M. Tajuddin, P.K. Das, M. Tariq, N.S. Dhalla, editors. pp. 231–243. University Park, BaltimoreGoogle Scholar
  8. Délèze, J., Hervé, J.C. 1983. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart.J. Membrane Biol. 74:203–215CrossRefGoogle Scholar
  9. De Mazière, A., Analbers, L., Jongsma, H.J., Gros, D. 1992. Immunoelectron microscopoc visualization of the gap junction protein connexin40 in the mammalian heart.Eur. J. Morph. 30:305–308Google Scholar
  10. Gamble W., Vaughan, M., Kruth, H.S., Avigan, J. 1978. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.J. Lipid Res. 19:1068–1070PubMedGoogle Scholar
  11. Giaume, C., Fromaget, C., El Aoumari, A., Cordier, J., Glowinski, J., Gros, D. 1991. Gap junctions in cultured astrocytes: Single-channel currents and characterization of channel-forming protein.Neuron 6:133–143PubMedCrossRefGoogle Scholar
  12. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100CrossRefGoogle Scholar
  13. Havel R.J., Eder, H.A., Bragdon, J. 1955. The distribution and chemical preparation of ultracentrifugically separated lipoproteins in human serum.J. Clin. Invest. 34:1345–1353PubMedCrossRefGoogle Scholar
  14. Johnston, M.F., Simon, S.A., Ramón, F. 1980. Interaction of anaesthetics with electrical synapses.Nature 286:498–500PubMedCrossRefGoogle Scholar
  15. Kanter, H.L., Saffitz, J.E., Beyer, E.C. 1992. Cardiac myocytes express multiple gap junction proteins.Circ. Res. 70:438–444PubMedGoogle Scholar
  16. Kosower E.M., Kosower, N.S., Faltin, F. 1974. Membrane mobility agents: A new class of biologically active molecules.Biochim. Biophys. Acta 363:261–266PubMedCrossRefGoogle Scholar
  17. Kuhry, J.-G., Fonteneau, P., Duportail, G., Maechling, C., Laustriat, G. 1983. TMA-DPH: A suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells.Cell Biophys. 5:129–140PubMedGoogle Scholar
  18. Lakowicz, J.R., ed. 1983. Principles of Fluorescence Spectroscopy. Plenum, New YorkGoogle Scholar
  19. Malewicz, B., Kumar, V.V., Johnson, R.G., Baumann, W.J., 1990. Lipids in gap junction assembly and function.Lipids 25:419–427PubMedGoogle Scholar
  20. Meda, P., Bruzzone, R., Knodel, S., Orci, L. 1986. Blockage of cell-to-cell communication within pancreatic acini is associated with increased basal release of amylase.J. Cell Biol. 103:475–483PubMedCrossRefGoogle Scholar
  21. Meyer, R., Malewicz, B., Baumann, W.J., Johnson, R.G. 1990. Increased gap junction assembly between cultured cells upon cholesterol supplementation.J. Cell Sci. 96:231–238PubMedGoogle Scholar
  22. Niggli, E., Rüdisüli, A., Maurer, P., Weingart, R. 1989. Effects of general anesthetics on current flow across membranes in guinea pig myocytes.Am. J. Physiol. 256:C273-C281PubMedGoogle Scholar
  23. Page, E. 1992. Cardiac gap junctions.In: The Heart and the Cardiovascular System. H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan, editors. pp. 1003–1047. Raven, New YorkGoogle Scholar
  24. Pérez-Armendariz, M., Roy, C., Spray, D.C., Bennett, M.V.L. 1991. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells.Biophys. J. 59:76–92PubMedGoogle Scholar
  25. Robenek, H., Jung, W., Gebhardt, R. 1982. The topography of filipin-cholesterol complexes in the plasma membrane of cultured hepatocytes and their relation to cell junction formation.J. Ultrastr. Res. 78:95–106CrossRefGoogle Scholar
  26. Rook, M.B., Jongsma, H.J., van Ginneken, A.C.G. 1988. Properties of single gap junctional channels between isolated neonatal rat heart cells.Am. J. Physiol. 255:H770-H782PubMedGoogle Scholar
  27. Rüdisüli, A., Weingart, R. 1989. Electrical properties of gap junction channels in guinea-pig ventricular cell pairs revealed by exposure to heptanol.Fluegers Arch. 415:12–21CrossRefGoogle Scholar
  28. Schroeder, F., Jefferson, J.R., Kier, A.B., Knittel, J., Scallen, T.J., Gibson Wood, W., Hapala, I. 1991. Membrane cholesterol dynamics: Cholesterol domains and kinetic pools.Proc. Soc. Exp. Biol. Med. 196:235–252PubMedGoogle Scholar
  29. Severs, N.J. 1981. Plasma membrane cholesterol in myocardial muscle and capillary endothelial cells. Distribution of filipin-induced deformations in freeze-fracture.Eur. J. Cell Biol. 25:289–299PubMedGoogle Scholar
  30. Sheridan N.P., Block, E.R. 1988. Plasma membrane fluidity measurements in intact endothelial cells: Effect of hyperoxia on fluorescence anisotropies of 1-[4-(trimethylamino)phenyl]-6-phenyl hexatriene.J. Cell Physiol. 134:117–123PubMedCrossRefGoogle Scholar
  31. Shinitzky, M. 1984. Membrane fluidity and cellular functions.In: Physiology of Membrane Fluidity. M. Shinitzky, editor. Vol. 1, pp. 1–51. CRC, Boca Raton, FLGoogle Scholar
  32. Sklar, L.A., Miljanich, G.P., Bursten, L.S., Dratz, E.A. 1979. Thermal lateral phase separations in bovine retinal rod outer segment membranes and phospholipids as evidenced by parinaric acid fluorescence polarization and energy transfer.J. Biol. Chem. 254:9583–9597.PubMedGoogle Scholar
  33. Sklar, L.A. 1980. The partition of cis-parinaric acid and transparinaric acid among aqueous, fluid lipid and solid lipid phase.Mol. Cell. Biochem. 32:169–177PubMedCrossRefGoogle Scholar
  34. Sorisky A., Kucera, G.L., Rittenhouse, S.E. 1990. Stimulated cholesterol-enriched platelets display increased cytosolic Ca2+ and phospholipase A activity independent of changes in inositol triphosphates and agonist/receptor binding.Biochem. J. 265:747–754PubMedGoogle Scholar
  35. Spray, D.C., Burt, J.M. 1990. Structure-activity relations of the cardiac gap junction channel.Am. J. Physiol. 258:C195-C205PubMedGoogle Scholar
  36. Spray, D.C., Moreno, A.P., Kessler, J.A., Dermietzel, R. 1991. Characterization of gap junctions between cultured leptomeningeal cells.Brain Res. 568:1–14PubMedCrossRefGoogle Scholar
  37. Sumbilla, C., Lakowicz, J.R. 1983. Evidence for normal fibroblast cell membranes from individuals with Huntington's disease.J. Neurol. Sci. 62:23–40PubMedCrossRefGoogle Scholar
  38. Takens-Kwak, B.R., Jongsma, H.J., Rook, M.B., van Ginneken, A.C.G. 1992. Mechanism of heptanol-induced uncoupling of cardiac gap junctions: A perforated patch-clamp study.Am. J. Physiol. 262:C1531-C1538PubMedGoogle Scholar
  39. Van der Meer, B.W. 1988. Biomembrane structure and dynamics viewed by fluorescence.In: Subcellular Biochemistry. Hilderson et al., editors, Vol. 13, pp. 1–53. Plenum, New YorkGoogle Scholar
  40. Veenstra, R.D., De Haan, R.L. 1986. Measurement of single channel currents from cardiac gap junctions.Science 233:972–974PubMedCrossRefGoogle Scholar
  41. Wilders, R., Jongsma, H.J. 1992. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels.Biophys. J. 63:942–953PubMedCrossRefGoogle Scholar
  42. Yeagle, P.L. 1985. Cholesterol and the cell membrane.Biochim. Biophys. Acta 822:267–287PubMedGoogle Scholar
  43. Zwijsen R.M.L., Oudenhoven, I.M.J., de Haan, L.H.J. 1992. Effects of cholesterol and oxysterols on gap junctional communication between human smooth muscle cells.Eur. J. Pharmacol. 228:115–120PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • E. M. Lars Bastiaanse
    • 1
  • Habo J. Jongsma
    • 2
  • Arnoud van der Laarse
    • 1
  • Brenda R. Takens-Kwak
    • 2
  1. 1.Department of CardiologyUniversity HospitalLeidenthe Netherlands
  2. 2.Department of Physiology, Academic Medical CenterUniversity of Amsterdamthe Netherlands

Personalised recommendations