Skip to main content
Log in

High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

In this study, the multivariate partial least squares projections to latent structures (PLS) technique was used for modeling the RP-HPLC retention data of 17 chalcones, which were determined with methanol-water mobile phases of different compositions. The PLS model was based on molecular descriptors which can be calculated for any compound utilizing only the knowledge of its molecular structure. The PLS analysis resulted in a model with the following statistics: r=0.976, Q=0.933, s=0.076, and F=43.63. The adequacy of the developed model was assessed by means of crossvalidation and also, by PLS modeling of the retention data of several chalcones reported by Walczak et al. [J. Chromatogr. 353, 123, (1986)], which were obtained using stationary phases of different polarity (-NH2, DIOL,-CN, ODS, C8). The structural interpretation of the developed PLS model was accomplished by means of comparative correlations between the nonempirical descriptors used in the model and the solvation parameters developed by Abraham. The results obtained in this work provides evidence for the great potential of the topological approach for the development of quantitative structure-retention relationship (QSRR) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Harborne, T. J. Mabry, H. Mabry, “The Flavonoids”, Vol 1, Academic Press Inc., New York, 1975.

    Google Scholar 

  2. Y. B. Vibhute, S. S. Wadje, Indian J. Exp. Biol.14, 739, (1976).

    CAS  Google Scholar 

  3. Y. Ninomiya, N. Shimma, H. Ishitsuka, Antiviral Res.13, 61, (1990).

    Article  CAS  Google Scholar 

  4. J. C. Davila, A. Lenherr, D. Acosta, Toxicology57, 267, (1989).

    Article  CAS  Google Scholar 

  5. R. Edenharder, I. von Petersdorff, R. Rauscher, Mutat. Res.287(2), 261, (1993).

    CAS  Google Scholar 

  6. S. Murakami, J. Pharm. Pharmacol.42, 723, (1990).

    CAS  Google Scholar 

  7. H. K. Hsieh, T. H. Lee, J. P. Wang, J. J. Wang, C. N. Lin, Pharm. Res.15(1), 39, (1998).

    Article  CAS  Google Scholar 

  8. S. F. Nielsen, S. B. Christensen, G. Cruciani, A. Kharazmi, T. Liljefors, J. Med. Chem.41, 4819, (1998).

    Article  CAS  Google Scholar 

  9. R. De Vincenzo, G. Scambia, P. B. Panici, F. O. Ranelletti, G. Bonanno, A. Ercoli, F.D. Monache, F. Ferrari, M. Piantelli, S. Mancuso, Anticancer Drug Des.10, 481, (1995).

    Google Scholar 

  10. J. R. Dimmock, N. M. Kandepu, M. Hetherington, J. W. Quail, U. Pugazhenthi, A. M. Sudom, M. Chamankhah, P. Rose, E. Pass, T. M. Allen, S. Halleran, J. Szydlowski, B. Mutus, M. Tannous, E. K. Manavathu, T. G. Myers, E. De Clerq, J. Balzarini, J. Med. Chem.41, 1014, (1998).

    Article  CAS  Google Scholar 

  11. R. Kaliszan in “High Performance Liquid Chromatography”, P. R. Brown, R. A. Hartwick, Eds., vol. 98 In “Chemical Analysis Series of Monographs”, J. D. Winefordner, Y. M. Kolthoff, Eds., John Wiley & Sons, New York 1989, Chapter 14, p 563.

    Google Scholar 

  12. R. Kaliszan, J. Chromatogr. B,717, 125, (1998).

    CAS  Google Scholar 

  13. W. J. Lambert, J. Chromatogr. A,656, 469, (1993).

    Article  CAS  Google Scholar 

  14. J. G. Dorsey, M. G. Khaledi, J. Chromatogr. A,656, 485, (1993).

    Article  CAS  Google Scholar 

  15. J. M. Luco, M. E. Sosa, J. C. Cesco, C. E. Tonn, O. S. Giordano, Pestic. Sci.41, 1, (1994).

    CAS  Google Scholar 

  16. J. M. Luco, H. F. Ferretti, J. Chem. Inf. Comput. Sci.37, 392, (1997).

    Article  CAS  Google Scholar 

  17. J. M. Luco, J. Chem. Inf. Comput. Sci.39, 396, (1999).

    Article  CAS  Google Scholar 

  18. H. Kubinyi, in “QSAR: Hansch Analysis and Related Approaches” VCH, Weinheim, R. Mannhold, P. Krosgaard-Larsen, H. Timmerman, Eds., VCH, Weinheim 1995, Chapter 5, p 91.

    Google Scholar 

  19. S. E. Blanco, N. B. Debattista, J. M. Luco, H. F. Ferretti, Tetrahedron Lett.34, 4615, (1993).

    Article  CAS  Google Scholar 

  20. J. M. Luco, L. J. Yamin, H. F. Ferretti, J. Pharm. Sci.84, 903, (1995).

    CAS  Google Scholar 

  21. N. B. Debattista, N. B. Pappano, Talanta44, 1967, (1997).

    Article  CAS  Google Scholar 

  22. M. P. Montana, N. B. Pappano, N. B. Debattista, Talanta47, 729, (1998).

    Article  CAS  Google Scholar 

  23. N. B. Pappano, O. P. Centorbi, H. F. Ferretti, Rev. Microbiol. Sao Paulo25, 305, (1994).

    Google Scholar 

  24. N. B. Pappano, O. P. Centorbi, H. F. Ferretti, Rev. Microbiol. Sao Paulo21, 183, (1990).

    Google Scholar 

  25. N. B. Debattista, E. J. Borkowski, N. B. Pappano, J. Kavka, F. H. Ferretti, An. Asoc. Quím. Argent.74, 179, (1986).

    CAS  Google Scholar 

  26. B. Walczak, J. R. Chretien, M. Dreux, L. Morin-Allory, M. Lafosse, K. Szymoniak, F. Membrey, J. Chromatogr.353, 123, (1986).

    Article  CAS  Google Scholar 

  27. M. H. Abraham, Chem. Soc. Rev.22, 73, (1993).

    Article  CAS  Google Scholar 

  28. L. Reichel, K. Müller, Ber.74B, 1741, (1941).

    CAS  Google Scholar 

  29. R. Kaliszan, in “Quantitative Structure-Chromatographic Retention Relationships” J. D. Winefordner, Ed., John Wiley & Sons, New York, 1987, Chapter 8, p 138.

    Google Scholar 

  30. L. B. Kier, L. H. Hall, in “Molecular Connectivity in Chemistry and Drug Research”, G. de Stevens, Ed., Academic Press, New York, 1976.

    Google Scholar 

  31. P. C. Jurs, S. L. Dixon, L. M. Egolf, in “Chemometric Methods in Molecular Design” H. van de Waterbeemd, Ed., VCH, Weinheim, 1995, Vol. 2, Chapter 2.1, p 15.

    Google Scholar 

  32. J. Gálvez, R. García-Domenech, M. T. Salabert, R. Soler, J. Chem. Inf. Comput. Sci.34, 520, (1994).

    Article  Google Scholar 

  33. J. Gálvez, R. García-Domenech, V. de Julián-Ortiz, R. Soler, J. Chem. Inf. Comput. Sci.35, 272, (1995).

    Article  Google Scholar 

  34. P. Magee, in “Classical and Three-Dimensional QSAR in Agrochemistry”, C. Hansch, T. Fujita, Eds., American Chemical Society Symposium Series 606, Washington DC, 1995, Chapter 9, p. 120.

  35. S. Wold, in “Chemometric Methods in Molecular Design”, H. van de Waterbeemd, Ed., VCH, Weinheim 1995, Chapter 4.4, p 195.

    Google Scholar 

  36. C. M. Du, K. Valko, C. Bevan, D. Reynolds, M. H. Abraham, Anal. Chem.70, 4228, (1998).

    Article  CAS  Google Scholar 

  37. J. G. Dorsey, W. T. Cooper, Anal. Chem.66, 857, (1994).

    Article  Google Scholar 

  38. J. Li, D. A. Whitman, Anal. Chim. Acta368, 141, (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montaña, M.P., Pappano, N.B., Debattista, N.B. et al. High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling. Chromatographia 51, 727–735 (2000). https://doi.org/10.1007/BF02505412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505412

Key Words

Navigation