Archives of Gynecology and Obstetrics

, Volume 259, Issue 2, pp 69–77 | Cite as

Prevalence of human papillomavirus DNA in cervical tissue. Retrospective analysis of 855 cervical biopsies

  • J. Backe
  • T. Roos
  • L. Mulfinger
  • J. Martius


The histopathologic features of 855 cervical biopsies were correlated with the presence of human papillomavirus DNA using in situ hybridization (ISH) with biotin labeled type specific probes for Human Papilloma Virus (HPV) types 6, 11, 16, 18, 31, 33 and 51. HPV-DNA was found in 18% (13/72) of cervical intraeptihelial neoplasia I (CIN I), 30% (35/115) of CIN II, 28% (57(206) of CIN III, in 84% (21/25) of flat condyloma and in 13% (15/112) of normal cervical tissue. HPV DNA was detectable in 11% (5/46) of cervical adenocarcinoma and in 21% (59/279) of squamous cell carcinoma (SCC) of the cervix. High risk HPV types were identified more often than low risk HPV types in CIN I, CIN II, CIN III and SCC. HPV type 16/18 predominates over HPV type 31/33/51 in CIN I, flat condyloma and in SCC. The prevalence of HPV was strongly associated with the grade of differentiation of SCC. It was identified in 59% (23/39) of well differentiated SCC, in 18% (25/142) of moderately differentiated and in 11% (11/98) of poorly differentiated SCC.

Key words

Human Papillomavirus In situ Hybridization CIN Squamous cell carcinoma of the cervix Grading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backe J, Mulfinger L, Ott M, Hillenbrand C, Roos T, Martius J (1996) Retrospective analysis of human papillomavirus DNA in cervical biopsies over ten years. Int J Fetomat Med: in pressGoogle Scholar
  2. 2.
    Bernard C, Mougin C, Bettinger D, Didier JM, Lab M (1994) Detection of human papillomavirus by in situ polymerase chain reaction in paraffin-embedded cervical biopsies. Mol cell probes 8:337–343PubMedCrossRefGoogle Scholar
  3. 3.
    Chapman WB, Lorincz AT, Willett GD, Wright VC, Kurman RJ (1993) Evaluation of two commercially available in situ hybridization Kits for detection of human papillomavirus DNA in cervical biopsies: comparison to Southern Blot hybridization. Mod Pathol 6:73–79PubMedGoogle Scholar
  4. 4.
    Chen TM, Chen CA, Wu CC, Huang SC, Hsieh CY (1994) The genotypes and prognostic significance of human papillomaviruses in cervical cancer. Int J Cancer 57:181–184PubMedGoogle Scholar
  5. 5.
    Collins JE, Jenkins D, McCance DJ (1988) Detection of human papillomavirus DNA sequences by in situ DNA-DNA hybridisation in cervical intraepithelial neoplasia and invasive carcinoma: a retrospective study. J Clin Pathol 41:289–295PubMedGoogle Scholar
  6. 6.
    Crum CP, Nuovo G, Friedman D, Silverstein SJ (1988) A comparison of biotin and isotopelabele ribonucleic acid probes for in situ detection of HPV-16 ribonucleic acid in genital precancers. Lab Invest 58:354–359PubMedGoogle Scholar
  7. 7.
    Duggan MA, Benoit JL, McGregor SE, Nation JG, Inoue M, Stuart GCE (1993) The human papillomavirus status of 114 endocervical adenocarcinoma cases by dot blot hybridization. Hum Pathol 24:121–125PubMedCrossRefGoogle Scholar
  8. 8.
    Duggan MA, Inoue M, McGregor SE, Stuart GCE, Morris S, Chang-Poon V, Schepansky A, Honore L (1994) A paired comprison of dot blot hybridization and PCR amplification for HPV testing of cervical scrapes interpreted as CIN 1. Eur J Gynaec Oncol 15:178–187Google Scholar
  9. 9.
    ENZO Diagnostics PathoGene DNA Probe Assay for Detection of HPV (1988) Enzo Diagnostics, New YorkGoogle Scholar
  10. 10.
    Falcinelli C, Luzi P, Alberti P, Cosmi EV, Anceschi MM (1993) Human papilloma virus infection and Ki-ras oncogene in paraffin-embedded squamous carcinomas of the cervix. Gynecol Obstet Invest 36:185–188PubMedCrossRefGoogle Scholar
  11. 11.
    Ferenczy A, Mitao M, Nagai N, Silverstein S, Crum CP (1985) Latent papillomavirus and recurring genital warts. N Engl J Med 313:784–788PubMedCrossRefGoogle Scholar
  12. 12.
    Fukushima M, Okagaki T, Twiggs LB, Clark BA, Zachow KR, Ostrow RS, Faras AJ (1985) Histological types of carcinoma of the uterine cervix and the detectability of human papilomavirus DNA. Cancer Res 45:3252–3255PubMedGoogle Scholar
  13. 13.
    Griffin NR, Dockey D, Lewis FA (1991) Demonstration of low frequency of human papillomavirus DNA in cervical adenocarcinoma and adenocarcinoma in situ by the polymerase chain reaction and in situ hybridization. Int J Gynecol Pathol 10:36–43PubMedCrossRefGoogle Scholar
  14. 14.
    Heino P, Hukkanen V, Arstila V (1989) Detection of human papillomavirus (HPV) DNA in genital biopsy specimen by in situ hybridization with digoxigenin-labeled probes. J Virol Meth 26:331–338CrossRefGoogle Scholar
  15. 15.
    Higgins DH, Davy M, Roder D, Uzelin DM, Phillips GE, Burrell CJ (1991) Increased age and mortality associated with cervical carcinomas negative for human papillomavirus RNA. Lancet 338:910–913PubMedCrossRefGoogle Scholar
  16. 16.
    Ikenberg H, Sauerbrei W, Schottmüller U, Spitz C, Pfleiderer A (1994) Human papilloma-virus DNA in cervical carcinoma-correlation with clinical data and influence on prognosis. Int J Cancer 59:322–326PubMedGoogle Scholar
  17. 17.
    Johnson K (1995) Periodic health examination, 1995 update: 1. Screening for human papillomavirus infection in asymptomatic women. Can Med Assoc J 152:483–493Google Scholar
  18. 18.
    King L, Tase T, Twiggs LB, Okagaki T, Savage JE, Adcock LL, Prem KA, Carson LF (1989) Prognostic significance of the presence of human papillomavirus DNA in patients with invasive carcinoma of the cervix. Cancer 63:897–900PubMedCrossRefGoogle Scholar
  19. 19.
    Kiviat NB, Koutsky LA, Critchlow CW, Galloway DA, Vernon DA, Peterson ML, McElhose PE, Pendras SJ, Stevens CE, Holmes KK (1990) Comparison of southern transfer hybridization and dot filter hybridization for detection of cervical human papillomavirus infection with types 6, 11, 16, 18, 31, 33 and 35. Am J Clin Pathol 94:561–565PubMedGoogle Scholar
  20. 20.
    Low SH, Thong TW, Ho TH, Lee Y-S, Morita T, Singh M, Yap EY, Chan YC (1990) Prevalence of human papillomavirus type 16 and 18 in cervical carcinomas: a study by dot and southern blot hybridization and the polymerase chain reaction. Jpn J Cancer Res 81:1118–1123PubMedGoogle Scholar
  21. 21.
    Lungu O, Sun XW, Wright TC, Ferenczy A, Richart R, Silverstein S (1995) A polymerase chain reaction-enzyme-linked immunosorbent assay method for detecting human papillomavirus in cervical carcinomas and high-grade cervical cancer precursors. Obstet Gynecol 85:337–342PubMedCrossRefGoogle Scholar
  22. 22.
    Meanwell CA, Cox MF, Blackledge G, Maitland NJ (1987) HPV 16 DNA in normal and malignant cervical epithelium: implication for the aetiology and behaviour of the cervical neoplasms. Lancet 1:703–707PubMedCrossRefGoogle Scholar
  23. 23.
    Medas, Statistikprogramm für Medizin und Biowissenschaften, Grund C, Würzburg 1993Google Scholar
  24. 24.
    Munoz N, Bosch X, Kaldor JM (1988) Does human papillomavirus cause cervical cancer? The state of the epidemiological evidence. Br J Cancer 57:1–5PubMedGoogle Scholar
  25. 25.
    Nielsen AL (1990) Human papillomavirus type 16/18 in uterine cervical adenocarcinoma in situ and adenocarcinoma. Cancer 65:2588–2593PubMedCrossRefGoogle Scholar
  26. 26.
    Nuovo GJ (1988) Correlation of histology with human papillomavirus DNA detection in the female genital tract. Gynecol Oncol 31:176–181PubMedCrossRefGoogle Scholar
  27. 27.
    Nuovo GJ (1989) A comparison of different methodologies (biotin based and 35S based) for the detection of human papillomavirus DNA. Lab Invest 61:471–476PubMedGoogle Scholar
  28. 28.
    Peng H, Liu S, Mann V, Rohan T, Rawls W (1991 Human papillomavirus types 16 and 33, herpes simplex virus type 2 and other risk factors for cervical cancer in sichuan province, China. Int J Cancer 47:711–716PubMedGoogle Scholar
  29. 29.
    Reid R, Greenberg M, Jenson AB, Husain M, Willett J, Daoud Y, Temple G, Stanhope CR, Sherman AI, Phibbs GD, Lorincz AT (1987) Sexually transmitted papillomaviral infections: The anatomic distribution and pathologic grade of neoplastic lesions associated with differtient viral types. Am J Obstet Gynecol 156:212–222PubMedGoogle Scholar
  30. 30.
    Richart RM, Nuovo GJ (1990) Human papillomavirus DNA in situ hybridization may be used for the quality control of genital tract biopsies. Obstet Gynecol 75:223–226PubMedGoogle Scholar
  31. 31.
    Riou G, Favre M, Jeannel D, Bourhis J, le Doussal V, Orth G (1990) Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. Lancet 335:1171–1174PubMedCrossRefGoogle Scholar
  32. 32.
    Rosai J (1989) Female reproductive system: uterus-cervix. In: Ackerman’s surgical Pathology, 7ed, Vol II, The C.V. Mosby Company, Washington, p 1028–1029Google Scholar
  33. 33.
    Schmauz R, Okong P, de Villiers EM, Dennin R, Brade L, Lwanga SK, Owor R (1989) Multiple infections in cases of cervical cancer from a high-incidence area in tropical Africa. Int J Cancer 43:805–809PubMedGoogle Scholar
  34. 34.
    Schneider A, Oltersdorf T, Schneider V, Gissmann L (1987) Distribution pattern of human papilloma virus 16 genome in cervical neoplasia by molecular in situ hybridization of tissue sections. Int J Cancer 39:717–721PubMedGoogle Scholar
  35. 35.
    Schneider A, Kirchmayr R (1990) Spektrum von genitalen HPV-Infektionen und HPV-assoziierten Erkrankungen bei Frau und Mann. Geburtsh. und Frauenheilk. 50:518–523CrossRefGoogle Scholar
  36. 36.
    Shroyer KR (1993) Human papillomavirus and endocervical adenocarcinoma. Human Pathol 24:119–120CrossRefGoogle Scholar
  37. 37.
    Smotkin D, Berek JS, Fu YS, Hacker NF, Major FJ, Wettstein FO (1986) Human papillomavirus Deoxyribonucleic acid in adenocarcinoma and adenosquamous carcinoma of the uterine cervix. Obstet Gynecol 68:241–244PubMedGoogle Scholar
  38. 38.
    Tase T, Okagaki T, Clark BA, Manias DA, Ostrow RS, Twiggs LB, Faras AJ (1988) Human papillomavirus types and localization in adenocarcinoma and adenosquamous carcinoma of the uterine cervix: a study by in situ DNA hybridization. Cancer Res 48:993–998PubMedGoogle Scholar
  39. 39.
    Tsunokawa Y, Takebe N, Nozawa S (1986) Presence of human papillomavirus type-16 and type-18 DNA sequences and their expression in cervical cancers and cell lines from Japanese patients. Int J Cancer 37:499–503PubMedGoogle Scholar
  40. 40.
    Vuopala S, Pöllänen R, Kauppila A, Lehto VP (1993) Detection and typing of human papillomavirus infection affecting the cervix, vagina and vulva. Arch Gynecol Obstet 253:75–83PubMedGoogle Scholar
  41. 41.
    Wilczinsky SP, Bergen S, Walker J, Liao SY, Pearlman LF (1988) Human papillomaviruses and cervical cancer: analysis of histopathologic features associated with different viral types. Hum Pathol 19:697–704CrossRefGoogle Scholar
  42. 42.
    World Health Organization (1992) Histopathologic classification of tumors and tumor-like lesions of the uterine cervix and vaginaGoogle Scholar
  43. 43.
    Yokoyama M, Tsutsumi K, Pater A, Pater MM (1994) Human papillomavirus 18-immortalized endocervical cells with in vitro cytokeratin expression characteristics of adenocarcinoma. Obstet Gynecol 83:197–204PubMedGoogle Scholar
  44. 44.
    Zur Hausen H (1991) Human Papillomaviruses in the Pathogenesis of anogenital cancer. Virology 184:9–13PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • J. Backe
    • 1
  • T. Roos
    • 1
  • L. Mulfinger
    • 1
  • J. Martius
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of WürzburgWürzburgGermany

Personalised recommendations