Abstract
Stratum corneum lipids play a predominant role in maintaining the water barrier of the skin. In order to understand the biological variation in the levels and composition of ceramides, ceramide 1 subtypes, cholesterol and fatty acids, stratum corneum lipids collected from tape strippings from three body sites (face, hand, leg) of female Caucasians of different age groups were analysed. In addition, we studied the influence of seasonal variation on the lipid composition of stratum corneum from the same body sites. The main lipid species were quantified using high-performance thin-layer chromatography and individual fatty acids using gas chromatography. Our findings demonstrated significantly decreased levels of all major lipid species, in particular ceramides, with increasing age. Similarly, the stratum corneum lipid levels of all the body sites examined were dramatically depleted in winter compared with spring and summer. The relative levels of ceramide 1 linoleate were also depleted in winter and in aged skin whereas ceramide 1 oleate levels increased. The other fatty acid levels remained fairly constant with both season and age, apart from lignoceric and heptadecanoic acid which showed a decrease in winter compared with summer. The decrease in the mass levels of intercellular lipids and the altered ratios of fatty acids esterified to ceramide 1, are likely to contribute to the increased susceptibility of aged skin to perturbation of barrier function and xerosis, particularly during the winter months.
This is a preview of subscription content, access via your institution.
References
- 1.
Abe T, Mayuzumi J, Kikuchi N, Arai S (1989) Seasonal variations in skin temperature, skin pH, evaporative water loss and skin surface lipid values on human skin. Chem Pharm Bull 28: 387–392
- 2.
Abraham W, Wertz P, Downing D (1985) Linoleate-rich acyl-glucosylceramides of pig epidermis: structure determination by proton magnetic resonance. J Lipid Res 26: 761–766
- 3.
Akimoto K, Yoshikawa N, Higaki Y, Kawashima M, Imokawa G (1993) Quantitative analysis of stratum corneum lipids in xerosis and asteatotic eczema. J Dermatol 20: 1–6
- 4.
Bowser P, White R (1985) Isolation barrier properties and lipid analysis of the stratum compactum—a discrete region of the stratum corneum. J Invest Dermatol 112: 1–14
- 5.
Brincat M, Moniz CF, Studd JWW, Darby AJ, Magos A, Cooper D (1983) Sex hormones and skin collagen content in postmenopausal women. BMJ 287: 1337–1338
- 6.
Brod J, Traitler H, Studer A, de la Charrier V (1988) Evolution of lipid composition in skin treated with blackcurrant seed oil. Int J Cosmet Sci 10: 149–159
- 7.
Burr G, Burr M (1929) A new deficiency disease produced by rigid exclusion of fat from the diet. J Biol Chem 82: 345–367
- 8.
Denda M, Koyama J, Hori J, Horii I, Takahashi M, Hara M, Tagami H (1993) Age- and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res 285: 415–417
- 9.
Denda M, Koyama R, Horii I (1994) Stratum corneum lipid morphology and transepidermal water loss in normal skin and surfactant-induced scaly skin. Arch Dermatol Res 286: 41–46
- 10.
Elias P, Friend D (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65: 180–191
- 11.
Elias P, Menon G (1991) Structural and lipid biochemical correlates’ of the epidermal permeability barrier. In: Elias P (ed) Skin lipid. Advances in lipid research, Academic Press, San Diego 24, p 26
- 12.
Elias P, Williams M, Maloney M, Bonifas J, Brown B, Grayson S, Ervin H, Epstein J (1984) Stratum corneum lipids in disorders of cornification. J Clin Invest 74: 1414–1421
- 13.
Ghadially R, Brown B, Sequeira-Martin S, Feingold K, Elias P (1995) The aged epidermal permeability barrier. J Clin Invest 95: 2281–2290
- 14.
Gluden G, Guzek D, Kennedy A, Mckie J, Potts R (1989) Stratum corneum phase transitions and water barrier properties. Biochemistry 26: 2382–2388
- 15.
Grove GL, Kligman AM (1983) Age-associated change in human epidermal cell renewal. J Gerontol 38: 137–142
- 16.
Herrmann S, Scheuber E, Plewig G (1983) Exfoliative cytology: effects of seasons. In: Marks R (ed) The stratum corneum. Springer, Berlin Heidelberg New York, pp 181–185
- 17.
Hou S, White S, Menon G, Grayson S, Ghadially R, Elias P (1991) Membrane structures in normal and essential fatty acid deficient stratum corneum: characteristics by ruthenium tetroxide staining and x-ray diffraction. J Invest Dermatol 96: 215–223
- 18.
Imokawa G, Hattori M (1985) A possible function of structural lipid in the water holding properties of the stratum corneum. J Invest Dermatol 84: 282–284
- 19.
Imokawa G, Akasaki S, Hattori M, Yoshizuka N (1986) Selective recovery of deranged water-holding properties by stratum corneum lipids. J Invest Dermatol 87: 758–761
- 20.
Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased levels of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin. J Invest Dermatol 96: 523–526
- 21.
Lundstrom A, Egulrud T (1989) Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res 282: 234–237
- 22.
Malkinson FD (1958) Studies of the percutaneous absorption of C14 labelled steroids by use of the gas-flow cell. J Invest Dermatol 31: 19–28
- 23.
Man M, Feingold K, Elias P (1993) Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Arch Dermatol 129: 728–738
- 24.
Marks R, Lawson A, Nicholls S (1983) Age-related changes in stratum corneum, structure and function. In: Marks R (ed) The stratum corneum. Springer, Berlin Heidelberg New York, pp 175–180
- 25.
Niemenen E, Leikola E, Koijoner M, Kiistala U, Mestakillo K (1967) Quantitative analysis of epidermal lipids by thin layer chromatography with specific reference to seasonal and age variations. Acta Derm Venereol 47: 327–338
- 26.
Oldroyd J, Critchley P, Tiddy G, Turner J, Rawlings A (1994) Specialised role for ceramide one in the stratum corneum water barrier. J Invest Dermatol 102: 525
- 27.
Potts RO, Francoeur ML (1991) The influence of stratum corneum morphology on water permeability. J Invest Dermatol 96: 495–499
- 28.
Rawlings A, Critchley P, Ackerman C, Parnell A, Rogers J, Oldroyd J (1992) The functional roles of ceramide one. Proceed 17th IFSCC, International federation societies of cosmetic chemists, Vienna. Int Congress 1: 14
- 29.
Rawlings A, Watkinson A, Harding C, Ackerman C, Banks J, Hope J, Scott I (1992) Changes in stratum corneum lipid structure and water barrier function during mechanical stress. Proceed 17th IFSCC, International federation societies of cosmetic chemists, Vienna. Int Congress 1: 14
- 30.
Rawlings A, Hope J, Watkinson A, Harding C, Egelrud T (1993) The biological effect of glycerol. J Invest Dermatol 100: 526
- 31.
Rawlings A, Hope J, Rogers J, Mayo A, Watkinson A, Scott I (1994) Abnormalities in sratum corneum structure, lipid composition and desmosome degradation in soap induced winter xerosis. J Soc Cosmet Chem 45: 203–220
- 32.
Rawlings A, Bowser P, Harding C, Scott I (1994) Stratum corneum moisturisation at the molecular level. J Invest Dermatol 103: 1–10
- 33.
Roskos K, Guy R (1989) Assessment of skin barrier function using transepidermal water loss: effect of age. Pharm Res 6: 949–953
- 34.
Saint-Leger D, Francois A, Leveque J, Stoudemayer T, Kligman A, Grove G (1989) Stratum corneum lipids in xerosis. Dermatologica 178: 151–155
- 35.
Scott I, Harding C (1986) Fillagrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev Biol 115: 84
- 36.
Shuster S, Black MM, McVitie E (1975) The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 93: 639–643
- 37.
Sugino K, Imokawa G, Maibach H (1993) Ethnic differences of stratum corneum lipid in relation to stratum corneum function. J Invest Dermatol 100: 587
- 38.
Urano R, Sakabe K, Kawashima I, Ohkido M, Seiki K (1992) Effects of estrogen and progesterone on induction and proliferation of normal human keratinocytes. J Dermatol Sci 4: 141
- 39.
Watkinson A, Smith G, Rawlings A (1994) Identification and localization of tryptic and chymotryptic like enzymes in human stratum corneum. J Invest Dermatol 102: 637
- 40.
Wertz P, Downing (1983) Acylglucoceramides of pig epidermis; structure determination. J Lipid Res 24: 753–758
- 41.
Wertz P, Downing D (1983) Ceramides of pig epidermis: structure determination. J Lipid Res 24: 759–765
- 42.
Wertz PW, miethke MC, Long SA, Strauss JS, Downing DT (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84: 410–412
- 43.
Yoshikawa N, Imokawa G, Akimoto K, Jin K, Higaki Y, Kawashima M (1994) Regional analysis of ceramides within the stratum corneum in relation to seasonal changes. Dermatology 188: 207–214
- 44.
Yumamoto A, Serizawa M, Ito M, Sato Y (1991) Stratum corneum lipid abnormalities in atopic dermatitis. Arch Dermatol Res 283: 219–223
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rogers, J., Harding, C., Mayo, A. et al. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288, 765–770 (1996). https://doi.org/10.1007/BF02505294
Received:
Issue Date:
Key words
- Stratum corneum lipids
- Ceramides
- Ageing
- Seasons
- Ceramide 1 linoleate