Skip to main content
Log in

Influence of topical photodynamic therapy with 5-aminolevulinic acid on porphyrin metabolism

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) with topically applied 5-aminolaevulinic acid (5-ALA) is increasingly used for treating tumours. The efficacy of topical PDT is limited to superficial and initial tumours. The topically applied doses of 5-ALA vary from 0.02 to 7.0 g per session according to the type of lesion. There are no studies on the influence of topically applied 5-ALA on the systemic accumulation of porphyrins or porphyrin precursors. A group of 20 patients with actinic keratoses (AK) and basal cell carcinomas (BCC) were treated by topical PDT with 5-ALA. Prior to and 6 and 24 h after PDT, 5-ALA and total porphyrin concentrations were determined in red blood cells and plasma, respectively. In addition, before and after 5-ALA treatment, 24-h urine samples were collected and porphyrins and porphyrin precursors were measured. There was no significant alteration in porphyrin metabolism. In some patients, a slight but insignificant increase in erythrocyte and plasma porphyrins was found 6 h after 5-ALA PDT. This investigation confirms clearly the safety of this treatment modality and demonstrates that 5-ALA application (up to 7 g) in the course of PDT has no influence on the concentrations of porphyrins and porphyrin precursors measured in various compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landthaler M, Rück A, Szeimies RM (1993) Photodynamische Therapie von Tumoren der Haut. Hautarzt 44:69–74

    PubMed  CAS  Google Scholar 

  2. Bensasson RV, Land EJ, Truscott TG (1993) Excited states and free radicals in biology and medicine, Oxford University Press. Oxford, pp 322–345

    Google Scholar 

  3. Valenzeno DP (1987) Photomodification of biological membranes with emphasis on singlet oxygen mechanism. Photochem Photobiol 46:147–160

    PubMed  CAS  Google Scholar 

  4. Salet C, Moreno G (1990) Photosensitization of mitochondria. Molecular and cellular aspects. J Photochem Photobiol Biol B 5:133–150

    Article  CAS  Google Scholar 

  5. Goetz AE, Feyh J, Müller W, Fritsch C, Kastenbauer E, Brendel W (1990) Photodynamische Lasertherapie am Patienten—Photosensibilisatorfluoreszenz und photodynamisch induzierte Perfusionsänderungen. Langenbecks Arch Chir Suppl Chir Forum: 259–265

  6. Fritsch C, Lumper W, Kuhnle GEH, Abels C, Goetz AE (1994) Durchblutung von Tumoren vor und nach Photodynamischer Therapie, gemessen mit der Natrium-Fluoreszein-Fluxmetrie. In: Tilgen W, Petzoldt D (eds) Fortschritte der operativen und onkologischen Dermatologie. Springer, Berlin Heidelberg New York, pp 315–320

    Google Scholar 

  7. Pass HI (1993) Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst 85:443–453

    PubMed  CAS  Google Scholar 

  8. Al-Laith M, Matthews EK (1994) Calcium-dependent photodynamic action of di- and tetrasulphonated aluminium phthalocyanine on normal and tumour-derived rat pancreatic exocrine cells. Br J Cancer 70:893–899

    PubMed  CAS  Google Scholar 

  9. Santoro O, Bandieramonte G, Melloni E, Marchesini R (1990) Photodynamic therapy by topical meso-tetraphenylporphine-sulfate tetrasodium salt administration in superficial basal cell carcinomas. Cancer Res 50:4501–4503

    PubMed  CAS  Google Scholar 

  10. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol Biol 6: 143–148

    Article  CAS  Google Scholar 

  11. Szeimies RM, Abels C, Fritsch C, Karrer S, Steinbach P, Bäumler W, Goerz G, Goetz AE, Landthaler M (1995) Wave-length dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol 105:672–677

    Article  PubMed  CAS  Google Scholar 

  12. Cairnduff F, Stringer, MR, Hudson EJ, Ash DV, Brown SB (1994) Superficial photodynamic therapy with topical 5-aminolevulinic acid for superficial primary and secondary skin cancer. Br J Cancer 69:605–608

    PubMed  CAS  Google Scholar 

  13. Fritsch C, Lehmann P, Bolsen K, Ruzicka T, Goerz G (1994) Photodynamische Diagnostik und Photodynamische Therapie von aktinischen Keratosen. H+G 69:713–716

    Google Scholar 

  14. Wolf P, Rieger E, Kerl H (1993) Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. J Am Acad Dermatol 28:17–21

    Article  PubMed  CAS  Google Scholar 

  15. Szeimies RM, Landthaler M (1995) Treatment of superficial skin tumours with topical photodynamic therapy. Hautarzt 46: 315–318

    Article  PubMed  CAS  Google Scholar 

  16. Kappas A, Sassa S, Galbrath RA, Nordmann Y (1989) The porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Volle D (eds) The metabolic basis of inherited diseases, 6th edn. McGraw-Hill, New York, pp 1305–1365

    Google Scholar 

  17. Martin A, Tope WD, Grevelink JM, Starr JC, Fewkes JL, Flotte TJ, Deutsch TF, Anderson RR (1995) Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic therapy. Arch Dermatol Res 287:665–674

    Article  PubMed  CAS  Google Scholar 

  18. Abels C, Heil P, Dellian M, Kuhnle GEH, Baumgartner R, Goetz AE (1994) In vivo kinetics and spectra of 5-aminolevulinic acid induced fluorescence in an amelanotic melanoma of the hamster. Br J Cancer 70:826–833

    PubMed  CAS  Google Scholar 

  19. Szeimies RM, Sassay T, Landthaler M (1994) Penetration potency of topical applied delta aminolevulinic acid for photodynamic therapy of basal cell carcinoma. Photochem Photobiol 59:73–76

    PubMed  CAS  Google Scholar 

  20. Medeiros MHG, DiMascio P, Gründel S, Soboll S, Sies H, Bechara EJH (1994) Catabolism of 5-aminolevulinic acid to CO2 by rat liver mitochondria. Arch Biochem Biophys 310: 205–209

    Article  PubMed  CAS  Google Scholar 

  21. Onuki J, Medeiros MHG, Bechara EJH, DiMascio P (1994) 5-aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions. Biochim Biophys Acta 1225:259–263

    PubMed  CAS  Google Scholar 

  22. Hermes-Lima M, Medeiros MHG, Bechara EJH, DiMascio P (1991) Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species. Connections with acute intermittent porphyria and lead poisoning. Biochim Biophys Acta 1056:57–63

    Article  PubMed  CAS  Google Scholar 

  23. Fritsch C, Batz J, Bolsen K, Schulte KW, Ruzicka T, Goerz G (1994) Exogenous δ-aminolevulinic acid induces the porphyrin biosynthesis in human skin organ cultures with different porphyrin patterns in normal and malignant human tissue. SPIE Proc 2371:215–220

    Google Scholar 

  24. Szeimies RM, Hein R, Bäumler W, Heine A, Landthaler M (1994) A possible new incoherent lamp for photodynamic treatment of superficial skin lesions. Acta Derm Venereol (Stockh) 74:117–119

    CAS  Google Scholar 

  25. Doss M, Schmidt A (1971) Quantitative Bestimmung der δ-Aminolävulinsäure und Porphobilinogen im Urin mit Ionenaustauscherchromatographie-Fertigsäulen. Z Klin Chem Klin Biochem 9:99–102

    PubMed  CAS  Google Scholar 

  26. Doss M, Schmidt A (1971) Rapid determination of urinary total porphyrins by ion exchange chromatography. Z Klin Chem Klin Biochem 9:415–418

    PubMed  CAS  Google Scholar 

  27. Piomelli S, Young P, Gay G (1973) A micromethod for free erythrocyte porphyrins: the FEP test. J Lab Clin Med 81:932–940

    PubMed  CAS  Google Scholar 

  28. Doss M (1973) Metabolism of δ-aminolevulinic acid and porphobilinogen in human erythrocytes in acute intermittent porphyria. Enzyme 16:343–353

    PubMed  CAS  Google Scholar 

  29. Regula J, MacRobert AJ, Gorchein A, Bonaccorsi GA, Thorpe SM, Spencer GM, Hatfield ARW, Bown SG (1995) Photosensitization and photodynamic therapy of esophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX—a pilot study. Gut 36:67–75

    PubMed  CAS  Google Scholar 

  30. Bickers DR, Keogh L, Rifkind AB, Harber LC, Kappas A (1977) Studies in porphyria. VI. Biosynthesis of porphyrins in mammalian skin and in the skin of porphyric patients. J Invest Dermatol 68:5–9

    Article  PubMed  CAS  Google Scholar 

  31. Becker-Wegerich P, Fritsch C, Neuse W, Schulte KW, Ruzicka T, Goerz G (1995) Effektive Kryochirurgie oberflächlicher Hauttumoren unter photodynamischer Diagnostik. H+G 70:891–895

    Google Scholar 

  32. Kriegmair M, Baumgartner R, Knüchel R, Ehsan A, Steinbach P, Lumper W, Hofstädter F, Hofstetter A (1994) Photodynamische Diagnose urothelialer Neoplasien nach intravesikaler Instillation von 5-Aminolävulinsäure. Urologe 33:270–275

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritsch, C., Verwohlt, B., Bolsen, K. et al. Influence of topical photodynamic therapy with 5-aminolevulinic acid on porphyrin metabolism. Arch Dermatol Res 288, 517–521 (1996). https://doi.org/10.1007/BF02505247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505247

Key words

Navigation