Skip to main content
Log in

Proliferation and differentiation of cultured human follicular keratinocytes are not influenced by biotin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

In humans and in animals, biotin deficiency causes pathological changes in the skin and its appendages. High doses of biotin may also have beneficial effects on skin, hair and fingernails in humans and animals with normal biotin status. Therefore, we investigated the effects of low and high concentrations of biotin on proliferation and differentiation of cultured outer root sheath cells from human hair follicles as an in vitro model for skin. The activities of biotin-dependent carboxylases were measured to evaluate the biotin status of the cells. In monolayer cultures of outer root sheath cells, proliferation and expression of the differentiation-specific keratins K1 and K10 were not influenced by extremely low concentrations of biotin (<2×10−10 mol/l) or by pharmacological doses of biotin (10−5 mol/l). Biotin deficiency of the cells was confirmed under the former condition by demonstrating decreased activities of the mitochondrial carboxylases. In organotypic cocultures of outer root sheath cells and dermal fibroblasts, in which stratified epithelia resembling epidermis were developed, the biotin concentration had no effect on the expression of all tested epidermal differentiation markers, including the suprabasal keratins K1 and K10, the hyperproliferation-associated keratin K16, involucrin and filaggrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baur M, Breitkreutz D, Fusenig NE (1995) Growth and differentiation of transformed human keratinocytes and skin fibro-blasts under defined serum-free conditions in conventional and organotypic cultures (submitted)

  2. Bishop GH (1945) Generation after experimental removal of skin in man. Am J Anat 76:253–281

    Article  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Bryant KL, Kornegay ET, Knight JW, Webb KE, Notter DR, Notter JR (1985) Supplemental biotin for swine. J Anim Sci 60:136–162

    PubMed  CAS  Google Scholar 

  5. Cotsarelis G, Tung-Tien S, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  6. Coulombe PA, Kopan R, Fuchs E (1989) Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. J Cell Biol 109:2295–2312

    Article  PubMed  CAS  Google Scholar 

  7. Dakshinamurti K, Chauhan J (1989) Biotin. In: Aurbach GD, McCormick DB (eds) Vitamins and hormones. Advances in research and applications. Academic Press, London New York, pp 337–384

    Google Scholar 

  8. Dale BA, Resing KA, Haydock PV, Gleckman P, Fisher C, Holbrook K (1988) Intermediate filament associated protein of epidermis. In: Rogers GE, Reis PJ, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman and Hall, London New York, pp 97–115

    Google Scholar 

  9. De Jong EMGJ, Vlijmen IMMJ van, Erp PEJ vanet al (1991) Keratin 17: a useful marker in anti-psoriatic therapies. Arch Dermatol Res 283:480–482

    Article  PubMed  Google Scholar 

  10. Eichner R, Bonitz P, Sun TT (1984) Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol 98:1388–1396

    Article  PubMed  CAS  Google Scholar 

  11. Eisen AZ, Holyoke JB, Lobitz WC (1955) Responses of the superficial portion of the human pilosebaceous apparatus to controlled injury. J Invest Dermatol 15:145–156

    Google Scholar 

  12. Florsheim GL (1989) Behandlung brüchiger Fingernägel mit Biotin. Z Hautkr 64:41–48

    Google Scholar 

  13. Friedrich W (1988) Vitamins. De Gruyter. Berlin, pp 753–805

    Google Scholar 

  14. Frigg M, Schulze J, Völker L (1989) Clinical study on the effect of biotin on skin conditions in dogs. Schweiz Arch Tierheilk 131:621–625

    CAS  Google Scholar 

  15. Fritsche A, Mathis GA, Althaus FR (1991) Pharmakologische Wirkungen von Biotin of Epidermiszellen. Schweiz Arch Tierheilk 133:277–283

    CAS  Google Scholar 

  16. Heid HW, Moll I, Franke WW (1988) Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. I. Human and bovine hair follicles. Differentiation 37:137–157

    Article  PubMed  CAS  Google Scholar 

  17. Huszar M, Gigi-Leithner O, Moll R, et al (1986) Monoclonal antibodies to various acidic (type I) cytokeratins of stratified epithelia: selective markers for stratification and squamous cell carcinoma. Differentiation 31:141–153

    Article  PubMed  CAS  Google Scholar 

  18. Leighton F, Poole B, Beaufay H (1968) The large-scale separation of peroxysomes, mitochondria and lysosomes from the liver of rats injected with Triton WR-1339. J Cell Biol 37: 482–513

    Article  PubMed  CAS  Google Scholar 

  19. Leu U (1987) Vergleichende Untersuchungen über den Einfluss von oral verabreichtem Biotin auf das Hufhorn beim Pferd. Dissertation der Veterinärmedizinischen Fakultät der Universität Zürich

  20. Limat A, Noser FK (1986) Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J Invest Dermatol 87:485–488

    Article  PubMed  CAS  Google Scholar 

  21. Limat A, Hunziker T, Boillat C, et al (1989) Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J Invest Dermatol 92:758–762

    Article  PubMed  CAS  Google Scholar 

  22. Limat A, Hunziker T, Boillat C, et al (1990) Postmitotic human dermal fibroblasts preserve intact feeder properties for epithelial cell growth after long-term cryopreservation. In Vitro Cell Dev Biol 26:709–712

    PubMed  CAS  Google Scholar 

  23. Limat A, Breitkreutz D, Hunziker T, et al (1991) Restoration of the epidermal phenotype by follicular outer root sheath cells in recombinant culture with dermal fibroblasts. Exp Cell Res 194:218–227

    Article  PubMed  CAS  Google Scholar 

  24. Limat A, Breitkreutz D, Stark HJ, et al (1991) Experimental modulation of the differentiated phenotype of keratinocytes from epidermis and hair follicle outer root sheath and hair matrix cells. Ann NY Acad Sci 642:125–147

    Article  PubMed  CAS  Google Scholar 

  25. Limat A, Hunziker T, Braathen LR (1993) Effects of 1,25-dihydroxy-vitamin D3 and calcipotriol on organotypic cultures of outer root sheath cells: a potential model to evaluate antipsoriatic drugs. Arch Dermatol Res 285:402–409

    Article  PubMed  CAS  Google Scholar 

  26. Miltenburger HG, Sachse GE, Schliermann M (1987) S-phase cell detection with monoclonal antibody. Dev Biol Stand 66: 91–99.

    PubMed  CAS  Google Scholar 

  27. Moll R, Moll I, Wiest W (1982) Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicles during skin development in human fetuses. Differentiation 23:170–178

    Article  PubMed  CAS  Google Scholar 

  28. Moll R, Franke WW, Schiller DL (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  29. Oliver RF (1967) Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J Embryol Exp Morph 17:27–34

    PubMed  CAS  Google Scholar 

  30. Smola H, Thiekötter G, Fusenig NE (1993) Mutual induction of growth factor gene expression by epidermal-dermal cell in-teraction. J Cell Biol 122:417–429

    Article  PubMed  CAS  Google Scholar 

  31. Stark HJ, Breitkreutz D, Limat A, et al (1987) Keratins of the human hair follicle. “Hyperproliferative” keratins consistently expressed in outer root sheath cells in vivo and in vitro. Differentiation 35:236–248

    PubMed  CAS  Google Scholar 

  32. Stark HJ, Baur M, Breitkreutz D, Fusenig NE (1995) Organotypic cocultures of human skin keratinocytes and fibroblasts reconstitute normal epidermis under serum-free conditions. (submitted)

  33. Steinert PM, Steven AC, Roop DR (1985) The molecular biology of intermediate filaments. Cell 42:411–419

    Article  PubMed  CAS  Google Scholar 

  34. Sun TT, Eichner R, Nelson WG, Tseng SCG, Weiss PA, Jarvinen M, Woodcock-Mitchell J (1983) Keratin classes: molecular markers for differentiation. J Invest Dermatol 81:109–115

    Article  Google Scholar 

  35. Suormala T, Wick H, Bonjour JP, Baumgartner ER (1985) Rapid differential diagnosis of carboxylase deficiencies and evaluation of biotin responsiveness in a single blood sample. Clin Chim Acta 145:151–162

    Article  PubMed  CAS  Google Scholar 

  36. Suormala T, Baumgartner ER, Wick H, Scheibenreiter S, Schweitzer S (1990) Comparison of patients with complete and partial biotinidase deficiency: biochemical studies. J Inherit Metab Dis 13:76–92

    Article  PubMed  CAS  Google Scholar 

  37. Towbin H, Gordon J, Staehelin T (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets; procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  38. Watt FM (1983) Involucrin and other markers of keratinocyte terminal differentiation. J Invest Dermatol 81:100s-103s

    Article  PubMed  CAS  Google Scholar 

  39. Watt FM, Boukamp P, Hornung J, Fusenig NE (1987) Effect of growth environment on spatial expression of involucrin by human epidermal keratinocytes. Arch Dermatol Res 279: 335–340

    Article  PubMed  CAS  Google Scholar 

  40. Wolf B, Heard GS (1989). Disorders of biotin metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited diseases, 6th edn. McGraw-Hill, New York, pp 2083–2103

    Google Scholar 

  41. Woodcock-Mitchell J, Eichner R, Nelson WG, Sun TT (1982) Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol 95:580–588

    Article  PubMed  CAS  Google Scholar 

  42. Wu YJ, Parker LM, Binder NE, et al (1982) The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and non-keratinizing epithelia. Cell 31: 693–703

    Article  PubMed  CAS  Google Scholar 

  43. Yang JS, Lavker RM, Sun TT (1993) Upper human hair follicle contains a subpopulation of keratinocytes with superior in vitro proliferative potential. J Invest Dermatol 101:652–659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limat, A., Suormala, T., Hunziker, T. et al. Proliferation and differentiation of cultured human follicular keratinocytes are not influenced by biotin. Arch Dermatol Res 288, 31–38 (1996). https://doi.org/10.1007/BF02505040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505040

Key words

Navigation