Skip to main content
Log in

Immunoreactive analogues of erythrocyte ankyrin in human epidermal keratinocytes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Using immunoblot and immunofluorescence analysis, we demonstrated the presence and localization of an immunoreactive form of erythrocyte ankyrin in human epidermal keratinocytes. Immunoblot analysis revealed that both human epidermis and cultured epidermal keratinocytes contained ankyrin-like proteins of molecular mass 210 kDa that crossreacted with antihuman erythrocyte ankyrin antibodies. Immunofluorescence microscopy revealed that the plasma membrane of epidermal keratinocytes was stained. Eccrine sweat gland cells and ductal cells were also stained. These results indicate that in human epidermal keratinocytes, eccrine sweat gland cells and ductal cells, an ankyrin-like protein is present as one of the membrane proteins. The present findings and our recent previous studies showing the presence of a spectrin-like protein (fodrin) and 4.1-like proteins in these cells enable us to suggest that a membrane skeletal protein lattice may exist in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper SL, Stuart-Tilley A, Simmons CF, Brown D, Drenckhahn D (1994) The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K+-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest 93: 1430–1438

    PubMed  CAS  Google Scholar 

  2. Bennett V (1985) The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem 54: 273–304

    Article  PubMed  CAS  Google Scholar 

  3. Bennett V (1989) The spectrin-actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta 988: 107–121

    PubMed  CAS  Google Scholar 

  4. Bennett V (1992) Ankyrins: adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem 267: 8703–8706

    PubMed  CAS  Google Scholar 

  5. Bennett V, Davis J (1981) Immunoreactive forms of human erythrocyte ankyrin are localized in mitotic structures in cultured cells and are associated with microtubules in brain. Cold Spring Harb Symp Quant Biol 46: 647–657

    CAS  Google Scholar 

  6. Bennett V, Davis J (1981) Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain. Proc Natl Acad Sci USA 78: 7550–7554

    Article  PubMed  CAS  Google Scholar 

  7. Bourguignon LYW, Walker G, Suchard S, Balazovich K (1986) A lymphoma plasma membrane-associated protein with ankyrin-like properties. J Cell Biol 102: 2115–2124

    Article  PubMed  CAS  Google Scholar 

  8. Davis J, Davis L, Bennett V (1989) Diversity in membrane binding sites of ankyrins. J Biol Chem 264:6417–6426

    PubMed  CAS  Google Scholar 

  9. Drenckhahn D, Bennett V (1987) Polarized distribution of Mr 210000 and 190000 analogs of erythrocyte ankyrin along the plasma membrane of transporting epithelia, neurons and photoreceptors. Eur J Cell Biol 43: 479–486

    PubMed  CAS  Google Scholar 

  10. Green KJ, Parry DAD, Steinert PM, Virata MLA, Wagner RM, Angst BD, Milles LA (1990) Structure of the human desmoplakins: implications for function in the desmosomal plaque. J Biol Chem 265: 2603–2612

    PubMed  CAS  Google Scholar 

  11. Kaiser NW, O'Keefe E, Bennett V (1989) Adducin: Ca2+-dependent association with sites of cell-cell contact. J Cell Biol 109: 557–569

    Article  PubMed  CAS  Google Scholar 

  12. Kalomiris EL, Bourguignon LYW (1988) Mouse T-lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin. J Cell Biol 106: 319–327

    Article  PubMed  CAS  Google Scholar 

  13. Ketis NV, Hoover RL, Karnovsky MJ (1986) Isolation of bovine aortic endothelial cell plasma membranes: identification of membrane-associated cytoskeletal proteins J Cell Physiol 128: 162–170

    Article  PubMed  CAS  Google Scholar 

  14. Koob R, Zimmermann M, Schoner W, Drenckhahn D (1987) Colocalization and coprecipitation of ankyrin and Na+, K+-ATPase in kidney epithelial cells. Eur J Cell Biol 45: 230–237

    Google Scholar 

  15. Koob R, Kraemer D, Trippe G, Aebi U, Drenckhahn D (1990) Association of kidney and parotid Na+, K+-ATPase microsomes with actin and analogs of spectrin and ankyrin. Eur J Cell Biol 53: 93–100

    PubMed  CAS  Google Scholar 

  16. Kordeli E, Davis J, Trapp B, Bennett V (1990) An isoform of ankyrin is localized at nodes of ranvier in myelinated axons of central and peripheral nerves. J Cell Biol 110: 1341–1352

    Article  PubMed  CAS  Google Scholar 

  17. Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344: 36–42

    Article  PubMed  CAS  Google Scholar 

  18. Morrow JS, Cianci CD, Ardito T, Mann AS (1989) Ankyrin links fodrin to the alpha subunit of Na, K-ATPase in Madin-Darby canine kidney cells and intact renal tubule cells. J Cell Biol 108: 455–465

    Article  PubMed  CAS  Google Scholar 

  19. Nelson WJ, Hammerton RW (1989) A membrane-cytoskeletal complex containing Na, K-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol 108: 893–902

    Article  PubMed  CAS  Google Scholar 

  20. Nelson WJ, Lazarides E (1984) Goblin (ankyrin) in striated muscle: identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc Natl Acad Sci USA 81: 3292–3296

    Article  PubMed  CAS  Google Scholar 

  21. Nelson WJ, Veshnock PJ (1987) Ankyrin binding to (Na++K+)-ATPase and implications for the organization of membrane domains in polarized cell. Nature 328: 533–536

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu T, Takakuwa Y, Koizumi H, Ishibashi T, Ohkawara A (1990) Immunohistochemical analysis of human skin using antispectrin and anti-β-fodrin antibodies. Arch Dermatol Res 282: 274–277

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu T, Takakuwa Y, Koizumi H, Ishibashi T, Ohkawara A (1991) Presence and localization of proteins immunologically related to erythrocyte protein 4.1 in human skin. Histochemistry 95: 549–554

    Article  PubMed  CAS  Google Scholar 

  24. Srinivasan Y, Elmer L, Davis J, Bennett V, Angelids K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333: 177–180

    Article  PubMed  CAS  Google Scholar 

  25. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Article  PubMed  CAS  Google Scholar 

  26. Tyler JM, Hargreaves WR, Branton D (1979) Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and band 2.1 and 4.1 Proc Natl Acad Sci USA 76: 5192–5196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, T., Takakuwa, Y., Koizumi, H. et al. Immunoreactive analogues of erythrocyte ankyrin in human epidermal keratinocytes. Arch Dermatol Res 288, 19–23 (1996). https://doi.org/10.1007/BF02505038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505038

Key words

Navigation