Two-stage and three-stage least squares estimation of dispersion matrix of disturbances in simulataneous equations

  • V. K. Srivastava
  • Ramji Tiwari
Article
  • 43 Downloads

Keywords

Suffix Simultaneous Equation Consistent Estimator Full Column Rank Dispersion Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, T. W. (1958).An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  2. [2]
    Brown, G. F., Ramage, J. G. and Srivastava, V. K. (1972). Disturbance variance estimation in simultaneous equations systems,Technical Report 68, Department of Statistics, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1–87.Google Scholar
  3. [3]
    Cramér, H. (1964).Mathematical Methods of Statistics Princeton University Press, Princeton.Google Scholar
  4. [4]
    Goldberger, A. S. (1964).Econometric Theory, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  5. [5]
    Mann, H. B. and Wald, A. (1943). On stochastic limit and order relationships,Ann. Math. Statist.,14, 217–226.MathSciNetGoogle Scholar
  6. [6]
    Nagar, A. L. (1961). A note on the residual variance estimation in simultaneous equations,Econometrica,29, 238–243.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Rao, C. R. (1965).Linear Statistical Inference and its Applications, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  8. [8]
    Roy, A. R. and Srivastava, V. K. (1972). The bias of generalized doublek-class estimators,Ann. Inst. Statist. Math.,24 495–508.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Srivastava, V. K. (1970) The bias of three-stage least squares estimator of variance-covariance matrix of disturbances in a simultaneous linear stochastic equation model, unpublished manuscript.Google Scholar
  10. [10]
    Srivastava, V. K. (1970). The efficiency of estimating seemingly unrelated regression equations,Ann. Inst. Statist. Math.,22, 483–493.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Srivastava, V. K. (1971) Three-stage least-squares and generalized doublek-class: A mathematical relationship,Int. Econ. Rev.,12, 312–316.CrossRefGoogle Scholar
  12. [12]
    Srivastava, V. K. (1971). Disturbance variance estimation in simultaneous equations byk-class method,Ann. Inst. Statist. Math.,23, 437–449.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Srivastava, V. K. (1972). Disturbance variance estimation in simultaneous equations when disturbances are small,J. Amer. Statist. Ass.,67, 164–168.CrossRefGoogle Scholar
  14. [14]
    Srivastava, V. K. (1973). The efficiency of an improved method of estimating seemingly unrelated regression equations,Journal of Econometrics,1, 341–350.CrossRefGoogle Scholar
  15. [15]
    Zellner, A. and Theil, H. (1962). Three-stage least squares: Simultaneous estimation of simultaneous equations,Econometrica,30, 54–78.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1976

Authors and Affiliations

  • V. K. Srivastava
    • 1
  • Ramji Tiwari
    • 1
  1. 1.Banaras Hindu UniversityBanarasIndia

Personalised recommendations