Advertisement

Two-stage and three-stage least squares estimation of dispersion matrix of disturbances in simulataneous equations

  • V. K. Srivastava
  • Ramji Tiwari
Article
  • 44 Downloads

Keywords

Suffix Simultaneous Equation Consistent Estimator Full Column Rank Dispersion Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, T. W. (1958).An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  2. [2]
    Brown, G. F., Ramage, J. G. and Srivastava, V. K. (1972). Disturbance variance estimation in simultaneous equations systems,Technical Report 68, Department of Statistics, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1–87.Google Scholar
  3. [3]
    Cramér, H. (1964).Mathematical Methods of Statistics Princeton University Press, Princeton.Google Scholar
  4. [4]
    Goldberger, A. S. (1964).Econometric Theory, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  5. [5]
    Mann, H. B. and Wald, A. (1943). On stochastic limit and order relationships,Ann. Math. Statist.,14, 217–226.MathSciNetGoogle Scholar
  6. [6]
    Nagar, A. L. (1961). A note on the residual variance estimation in simultaneous equations,Econometrica,29, 238–243.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Rao, C. R. (1965).Linear Statistical Inference and its Applications, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  8. [8]
    Roy, A. R. and Srivastava, V. K. (1972). The bias of generalized doublek-class estimators,Ann. Inst. Statist. Math.,24 495–508.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Srivastava, V. K. (1970) The bias of three-stage least squares estimator of variance-covariance matrix of disturbances in a simultaneous linear stochastic equation model, unpublished manuscript.Google Scholar
  10. [10]
    Srivastava, V. K. (1970). The efficiency of estimating seemingly unrelated regression equations,Ann. Inst. Statist. Math.,22, 483–493.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Srivastava, V. K. (1971) Three-stage least-squares and generalized doublek-class: A mathematical relationship,Int. Econ. Rev.,12, 312–316.CrossRefGoogle Scholar
  12. [12]
    Srivastava, V. K. (1971). Disturbance variance estimation in simultaneous equations byk-class method,Ann. Inst. Statist. Math.,23, 437–449.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Srivastava, V. K. (1972). Disturbance variance estimation in simultaneous equations when disturbances are small,J. Amer. Statist. Ass.,67, 164–168.CrossRefGoogle Scholar
  14. [14]
    Srivastava, V. K. (1973). The efficiency of an improved method of estimating seemingly unrelated regression equations,Journal of Econometrics,1, 341–350.CrossRefGoogle Scholar
  15. [15]
    Zellner, A. and Theil, H. (1962). Three-stage least squares: Simultaneous estimation of simultaneous equations,Econometrica,30, 54–78.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1976

Authors and Affiliations

  • V. K. Srivastava
    • 1
  • Ramji Tiwari
    • 1
  1. 1.Banaras Hindu UniversityBanarasIndia

Personalised recommendations