Characterization of distributions by the expected values of the order statistics

  • J. S. Huang
Article

Keywords

Order Statistic Pareto Distribution Cauchy Distribution Extra Constraint Orthogonal Expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boas, R. P. Jr. (1954).Entire Functions, Academic Press.Google Scholar
  2. [2]
    Chan, L. K. (1967). On a characterization of distributions by expected values of extreme order statistics,Amer. Math. Monthly,74, 950–951.CrossRefMathSciNetGoogle Scholar
  3. [3]
    David, H. A. (1970).Order Statistics, Wiley, New York.MATHGoogle Scholar
  4. [4]
    Ferguson, T. S. (1967). On characterizing distributions by properties of order statistics,Sankhyà A,29, 265–278.MathSciNetGoogle Scholar
  5. [5]
    Hájek, J. and Šidák, Z. (1967).Theory of Rank Tests, Academia, Prague.MATHGoogle Scholar
  6. [6]
    Konheim, A. G. (1971). A note on order statistics,Amer. Math. Monthly,78, 524.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Moriguti, Sigeiti (1951). Extremal properties of extreme value distributions,Ann. Math. Statist.,22, 523–536.MathSciNetGoogle Scholar
  8. [8]
    Pollak, Moshe (1973). On equal distributions,Ann. Statist.,1, 180–182.MathSciNetGoogle Scholar
  9. [9]
    Sen, Pranab Kumar (1959). On the moments of the sample quantiles,Calcutta Statist. Ass. Bull.,9, 1–19.Google Scholar
  10. [10]
    Stoops, Glenn and Barr, Donald (1971). Moments of certain Cauchy order statistics,Amer. Statistician,25, No. 5, 51.CrossRefGoogle Scholar
  11. [11]
    Sz.-Nagy, Bela (1965).Introduction to Real Functions and Orthogonal Expansions, Oxford Univ. Press, New York.MATHGoogle Scholar
  12. [12]
    Wang, Y. H. (1971). On a characterization of the distribution functions by the expected values of the order statistics,Tech. Report, No. 71-10, Division of Statistics, The Ohio State University.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1975

Authors and Affiliations

  • J. S. Huang
    • 1
  1. 1.University of GuelphGuelphCanada

Personalised recommendations