Measurement Techniques

, Volume 42, Issue 4, pp 377–382 | Cite as

Construction of fuzzy relations by means of fourier holography

  • A. V. Pavlov
Opticophysical Measurements


Optical Fourier holography is interpreted as a method of creating and recording fuzzy relations between sets represented in the form of images. The properties of the fuzzy relations created by means of a holographic correlator and images implemented in neural network algorithms are considered.


Fuzzy Relation Neural Network Algorithm Correlation Distribution Intelligent Measurement Correlation Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. D. Nedosekin et al.,Information Technology of Intelligent Measurement Processes [in Russian], Nauka, St. Petersburg (1995).Google Scholar
  2. 2.
    B. Kosko,Neutral Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs (1992).Google Scholar
  3. 3.
    A. Kofman,Introduction to the Theory of Fuzzy Sets [Russian translation], Radio i Svyaz', Moscow (1982).Google Scholar
  4. 4.
    D. A. Pospelov (ed.),Fuzzy Sets in Control Models and Models of Artificial Intelligence [in Russian], Nauka, Moscow (1986).Google Scholar
  5. 5.
    R. R. Yager (ed.),Fuzzy Sets and Theory of Possibilities [in Russian], Radio i Svyaz', Moscow (1993).Google Scholar
  6. 6.
    K. Asan et al.,Applied Fuzzy Systems [Russian translation], Mir, Moscow (1993).Google Scholar
  7. 7.
    A. V. Pavlov, A. N. Chaika, and F. L. Vladimorov,Proc. Inter. Conference “Soft Computing and Measurements,” SCM'98, St. Petersburg, June 22–26, 1998, p. 113.Google Scholar
  8. 8.
    G. I. Vasilenko and L. M. Tsibul'kin,Holographic Recognition Devices [in Russian], Radio i Svyaz', Moscow (1985).Google Scholar
  9. 9.
    F. T. S. Yu and J. Suganda,Optical Signal Processing, Computing, and Neural Networks, Wiley, New York (1992).Google Scholar
  10. 10.
    A. V. Pavlov,Opt. Spektrosk.,76, Vyp. 5, 794 (1994).ADSGoogle Scholar
  11. 11.
    M. M. Miroshnikov,Theoretical Foundations of Optico-electronic Devices [in Russian], Mashinostroenie, Leningrad (1983).Google Scholar
  12. 12.
    G. A. Sergeev and D. A. Yanutsh,Statistical Methods of Optico-electronic Devices [in Russian], Gidrometeoizdat, Leningrad (1973).Google Scholar
  13. 13.
    Yu. S. Tolchel'nikov,Optical Properties of Landscape [in Russian], Nauka, Leningrad (1975).Google Scholar
  14. 14.
    E. I. Shubnikov and A. M. Kuleshov,Opt. Spektrosk.,55, Vyp. 1, 161 (1983).Google Scholar
  15. 15.
    A. M. Kuleshov and E. I. Shubnikov,Opt. Spektrosk.,60, Vyp. 3, 606 (1986).Google Scholar
  16. 16.
    A. V. Pavlov,Opt. Spektrosk.,78, Vyp. 1, 152 (1995).Google Scholar
  17. 17.
    A. M. Kuleshov, A. V. Pavlov, and E. I. Shubnikov,Opt. Spektrosk.,59, Vyp. 2, 415 (1985).Google Scholar
  18. 18.
    E. I. Shubnikov,Opt. Spektrosk.,62, Vyp. 2, 450 (1987).Google Scholar
  19. 19.
    D. Middleton,Introduction to the Statistical Theory of Communications [Russian translation], Sov. Radio, Moscow (1961, 1962).Google Scholar
  20. 20.
    S. A. Aleksandrina and A. M. Kuleshov,Opt. Spektrosk.,68, Vyp. 3, 652 (1990).Google Scholar
  21. 21.
    A. V. Pavlov,Opt. Spektrosk.,70, Vyp. 6, 1337 (1991).Google Scholar
  22. 22.
    A. S. Rubanov and L. M. Serebryakova,Opt. Spektrosk.,79, Vyp. 6, 1009 (1995).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. V. Pavlov

There are no affiliations available

Personalised recommendations