Advertisement

Measurement Techniques

, Volume 40, Issue 5, pp 495–500 | Cite as

Thermal infrared spatial method of diagnosing plant states

  • V. G. Surin
Medical and Biological Measurements
  • 15 Downloads

Abstract

A contactless spectrometer operating in the range 8–14 μm has been developed for diagnosing plant states. The method has been tested on woody plants in a region where there are low-contrast geochemical anomalies involving elevated concentrations of heavy metals in the soil (zinc, lead, molybdenum, nickel, niobium, and tin). The spectral features of plant stress have been identified, which are related to various forms of spectrum for normal and stressed plants.

Keywords

Black Body Radiometric Correction Ladoga Region Remote Earth Sensing Precision Photometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Vinogradov, Aerospace Ecosystem Monitoring [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    P. Kronberg, Remote Earth Sensing: Principles and Methods for Remote Sensing in Geology [Russian translation from German], Mir, Moscow (1988).Google Scholar
  3. 3.
    N. N. Vygodskaya and I. I. Gorshkova, Theory and Experiment in Remote Sensing Applied to Plants [in Russian], Gidrometeoizdat, Leningrad (1987).Google Scholar
  4. 4.
    Xu Ruisong, Acta Geologica Sinica,5, No. 4, 411 (1992).CrossRefGoogle Scholar
  5. 5.
    E. Hoque and P. S. Hutzler, Remote Sensing of Environment,39, No. 4, 81 (1992).CrossRefGoogle Scholar
  6. 6.
    A. Yu. Zhumar' and E. A. Yanovskaya, Issled. Zemli Kosmos., No. 1, 25 (1993).Google Scholar
  7. 7.
    Y. Y. Aldakheel, Proc. 21st Ann. Conf. Remote Sensing Society 11–14 Sept. 1995, Univ. Southampton (1995), p. 955.Google Scholar
  8. 8.
    F. Kogan, Earth Observ. Magazine, 18 (Sept. 1994).Google Scholar
  9. 9.
    V. G. Surin, Izmer. Tekh., No. 8, 42 (1995).Google Scholar
  10. 10.
    V. G. Surin, Prib. Tekh. Éksp., No. 2, 138 (1996).Google Scholar
  11. 11.
    A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants [Russian translation], Mir, Moscow (1989).Google Scholar
  12. 12.
    E. G. Surin, Issled. Zemli Kosmos., No. 3, 51 (1992).Google Scholar
  13. 13.
    E. V. Kuvaldin and V. G. Surin, Nauch. Tekhnich. Zh. GOI im. S. I. Vavilova: Vestnik Hou-Khau, No. 5, Issue 7, 64 (1993).Google Scholar
  14. 14.
    E. V. Kuvaldin, V. N. Merkur'ev, and V. G. Surin, Izmer. Tekh., No. 8, 30 (1993).Google Scholar
  15. 15.
    M. A. Bramson, Reference Tables on Infrared Emission from Hot Bodies [in Russian], Nauka, Moscow (1964).Google Scholar
  16. 16.
    I. M. Kul'tiasov, Plant Ecology [in Russian], Izd. MGU, Moscow (1982).Google Scholar
  17. 17.
    A. A. Feoktistov, Issled. Zemli Kosmos., No. 3, 94 (1986).Google Scholar
  18. 18.
    V. G. Surin and G. A. Ladner, Issled. Zemli Kosmos., No. 3, 26 (1994).Google Scholar
  19. 19.
    V. G. Surin and G. A. Ladner, Proc. 11 Them. Conf. Geological Remote Sensing, Vol. 2, Las Vegas (1996), p. 198.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. G. Surin

There are no affiliations available

Personalised recommendations