Skip to main content
Log in

Resonance calculation for electrothermal damage to metal-insulator-metal structures

  • Acoustic Measurements
  • Published:
Measurement Techniques Aims and scope

Abstract

A thermal fluctuation theory has been developed for damage to metal-insulator-metal diode structures, which has been employed to determine the critical electrophysical parameters for oscillating structural changes arising in the insulator in a steady external electric field. The electronic processes giving rise to microdefects are of autowave origin and are accompanied by current oscillations, acoustic emission, and electromagnetic radiation. This can be used in remote-sensing nondestructive testing, and also for the elimination of manufacturing defects in solid-state electronic devices and the insulation in electrotechnical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Matare,Electronics of Defects in Semiconductors [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  2. N. Klein,Thin Solid Films,100, 235 (1983).

    Article  Google Scholar 

  3. G. P. Cherepanov,J. Appl. Phys.,75, No. 2, 844 (1994).

    Article  ADS  Google Scholar 

  4. B. K. Ridley,J. Appl. Phys.,46, No. 3, 998 (1975).

    Article  ADS  Google Scholar 

  5. G. A. Vorob'ev,Radiotekh. Elektron.,26, No. 3, 655 (1981).

    MathSciNet  Google Scholar 

  6. V. I. Arkhipov and A. I. Rudenko,Fiz. Tekh. Poluprov.,12, No. 10, 2033 (1978).

    Google Scholar 

  7. A. K. Jonsher,J. Phys. D: Appl. Phys.,13, L143 (1980).

    Article  ADS  Google Scholar 

  8. V. S. Soldatov,Poverkhnost'Fiz. Khim., Mekh., No. 7, 92 (1990).

    Google Scholar 

  9. A. K. Ray and C. A. Hogart,Intern. J. Electron.,57, No. 1, 1 (1984).

    Google Scholar 

  10. A. M. Kosevich and A. S. Kovalev,Introduction to Nonlinear Physical Mechanics [in Russian], Naukova Dumka, Kiev (1989).

    MATH  Google Scholar 

  11. V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov,Domain Electrical Instability [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  12. S. V. Gagin and E. I. Il'yasov,Diagnostic Systems in Strength Testing [in Russian], Radio i Svyaz', Moscow (1985).

    Google Scholar 

  13. N. M. Musakhanova,Theory of Joule Breakdown and Electrothermal Methods of Determining the Parameters of High-Resistance Semiconductors, PhD Thesis [in Russian], Tashkent (1982).

  14. P. Mark and W. Helfrich,J. Appl. Phys.,33, 205 (1962).

    Article  ADS  Google Scholar 

  15. J. Godlewsky and J. Kalinowski,Solid State Communs,25, No. 7, 473 (1978).

    Article  ADS  Google Scholar 

  16. A. P. Kochavtsev and A. A. Frantsuzov,Mikroelektronika,8, No. 5, 439 (1979).

    Google Scholar 

  17. S. E. Khaikin,Undamped Oscillations [in Russian], Énergoizdat, Moscow and Leningrad (1953), p. 116.

    Google Scholar 

  18. A. A. Andronov, A. A. Vitt, and S. E. Khaikin,Oscillation Theory [in Russian], GIFML, Moscow (1959).

    Google Scholar 

  19. M. E. Levinshtein, Yu. K. Pozhela, and M. S. Shur,The Gunn Effect [in Russian], S. M. Ryvkin (ed.), Sov. Radio, Moscow (1975).

    Google Scholar 

  20. M. Glicksman,IBM J. Res. Div.,13, 626 (1969).

    Article  Google Scholar 

  21. K. D. Tsendin (ed.),Electronic Phenomena in Vitreous Chalcogenide Semiconductors, Nauka, St. Petersburg (1996).

    Google Scholar 

  22. V. M. Finkel',Physical Principles of Failure Retardation [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  23. V. M. Maslovskii et al.,Fiz. Tekh. Poluprov.,28, No. 5, 772 (1994).

    Google Scholar 

  24. M. A. Lampert,Phys. Rev.,125, No. 1, 126 (1962).

    Article  ADS  Google Scholar 

  25. V. M. Bogomol'nyi,Metrologiya, No. 12, 3 (1998).

    Google Scholar 

  26. J. W. Obreimov,Proc. Royal Soc.,A127, No. 805, 290 (1929).

    Article  ADS  Google Scholar 

  27. E. Hess,Zeitschr. Phys.,78, 430 (1932).

    Article  ADS  Google Scholar 

  28. M. I. Molotskii,Fiz. Tverd. Tela,21, No. 7, 1957 (1978).

    Google Scholar 

  29. D. B. Janes, et al.,J. Appl. Phys.,78, No. 11, 6616 (1995).

    Article  ADS  Google Scholar 

  30. P. E. Zil'berman,Fiz. Tverd. Tela,9, No. 1, 309 (1967).

    Google Scholar 

  31. R. Peierls,Zeitschr. Phys.,58, No. 1, 59 (1929).

    Article  MATH  ADS  Google Scholar 

  32. L. D. Landau, “Electron motion in a crystal lattice,” in:Collected Works in 2 Volumes, E. M. Livshits (ed.), Vol. 1 [in Russian], Nauka, Moscow (1969), p. 90.

    Google Scholar 

  33. V. S. Bystrov,Fluctuation States in Ferroelectric Systems, PhD Thesis [in Russian], Riga (1983).

  34. S. H. Wemple and M. Di Domenico Jr.,J. Phys. Rev.,180, No. 2, 547 (1969).

    Article  ADS  Google Scholar 

  35. M. V. Korovkin,Thermally Stimulated Radio Emission from Ionic Crystals, PhD Thesis [in Russian], Tomsk (1986).

  36. U. G. Zabegaeva,Fast-Electron Energy-Loss Spectroscopy for Researching Semiconductor Materials, PhD Thesis [in Russian], Moscow (1997).

  37. D. K. Arkhipenko,Vibrational-Spectroscopy Researches on Mineral Structural Features, DSc Thesis [in Russian], Nobvosibirsk (1979).

Download references

Authors

Additional information

Translated from Izmeritel'naya Tekhnika, No. 6, pp. 53–57, June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomol'nyi, V.M. Resonance calculation for electrothermal damage to metal-insulator-metal structures. Meas Tech 43, 538–543 (2000). https://doi.org/10.1007/BF02503546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02503546

Keywords

Navigation