Schweizerische Zeitschrift für Hydrologie

, Volume 39, Issue 2, pp 261–276 | Cite as

Der Sauerstoffhaushalt von Fliessgewässern: Kritische Prüfung eines mathematischen Sauerstoffmodells anhand der Identifikation seiner Parameter in Flüssen und Künstlichen Rinnen

  • P. E. Erni
  • J. Ruchti


Results obtained by a previously published cross-correlation identification technique applied to the modified Streeter-Phelps river model suggest that the oxygen exchange rate, the oxygen invasion rate, an apparent photosynthesis rate and the respiration rate can be identified using oxygen measurements from a single point of observation. This hypothesis is examined here using the alternative method of differential approximation and the gradient method. It is found that the simple solely time dependent model is inadequate for the description of the dissolved oxygen concentration in a river and that consequently its parameters can not be identified using the measurements from a single point only.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Streeter, H.W., und Phelps, E.B.: A Study of the Pollution and Natural Purification of the Ohio River. III. Factors Concerned in the Phenomena of Oxidation and Reaeration. Publ. Health Bull. No. 146, US Publ. Health Service Washington, D.C., 1925.Google Scholar
  2. 2.
    Tsivoglou, E.C.: Tracer Measurement of Stream Reaeration. Federal Water Pollution Control Administration, US Department of the Interior, Washington, D.C., June 1967.Google Scholar
  3. 3.
    Longtin, J.R.: Radiological Safety. In: Symposium on Direct Tracer Measurement of the Reaeration Capacity of Streams and Estuaries, July 7–8, 1970; co-sponsors—Georgia Institute of Technology and US Environmental Protection Agency, Water Pollution Control Research Series 16050 for 01/72, p. 19–20.Google Scholar
  4. 4.
    O’Connor, D.J., und Dobbins, W.E.: Mechanism of Reaeration in Natural Streams. Trans. ASCE123, 641 (1956).Google Scholar
  5. 5.
    Dobbins, W.E.: The Nature of Oxigen Transfer Coefficient in Aeration Systems. Part 2–1 of Biological Treatment of Sewage and Industrial Wastes. Hrsg. McCabe und Eckenfelder. Rheinhold, New York, N.Y., 1956.Google Scholar
  6. 6.
    Churchill, M.A., Elmore, H.L., und Buckingham, R.A.: Prediction of Stream Reaeration Rates. J. sanit. Eng. Div., Proc. ASCE88, SA4, 1 (1962).Google Scholar
  7. 7.
    Koivo, H.N., und Koivo, A.J.: Optimal Estimation of Polluted Stream Variables. 3rd IFAC Symposium on Identification and System Parameter Estimation. 1973 (North-Holland-American Elsevier).Google Scholar
  8. 8.
    Schurr, J.M., und Ruchti, J.: Kinetics of Oxigen Exchange, Photosynthesis, and Respiration in Rivers Determined from Time-Delayed Correlations between Sunlight and Dissolved Oxygen. Schweiz. Z. Hydrol.37, 144 (1975).Google Scholar
  9. 9.
    Eykhoff, P.: System Identification, 303ff. John Wiley and Sons, London 1974.Google Scholar
  10. 10.
    Maletinsky, V., und Schaufelberger, W.: Suboptimum Adaptive Control. Proceedings of the 4th IFAC/IFIP International Conference on Digital Computer Applications to Process Control. Lecture Notes in Economics and Mathematical Systems, B. 93, 129ff. Springer-Verlag, Berlin 1974.Google Scholar
  11. 11.
    Wetzel, J.C.: Dissertation, in Vorbereitung.Google Scholar
  12. 12.
    Eichenberger, E., und Wuhrmann, K.: Growth and Photosynthesis during the Formation of a Benthic Algal Community. Verh. int. Ver. Limnol.19, 2035 (1975).Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • P. E. Erni
    • 1
  • J. Ruchti
    • 1
  1. 1.Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG)Dübendorf

Personalised recommendations