Schweizerische Zeitschrift für Hydrologie

, Volume 34, Issue 2, pp 173–189 | Cite as

Ökologische Untersuchungen an Modellfliessgewässern

IV. Auswirkung der Selbstreinigung auf die Biomassebildung in einem Abwassergradienten
  • E. Eichenberger
Article

Abstract

The benthic growth has been investigated during the first 20 days of colonisation in 200 m long river models polluted with 0, 1, 5 and 12% settled domestic sewage. The production of phototrophic and heterotrophic biomass was determined separately at the beginning, the middle and the end of the channels. The distribution of the heterotrophic biomass along the channels may be described by the equation:BZ(w 2)=BZ(w 1e k ·w (BZ=heterotrophic biomass production in g·day−1·m−2 surface,w=flow distance in m,k=coefficient for the reduction of heterotrophs along the channels in m−1). The phototrophs do not significantly contribute to the removal of growth substrates utilized by the heterotrophs. When locations containing identical heterotrophic biomass are compared in two channels treated with different pollution loads, biomass and species composition of phototrophic growth are remarkably different. The concentration change of pollutants in sewage caused by dilution or by biochemical reactions in a selfpurification reach induces clearly different biocenological effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    Curtis, E. J. C., Delves-Broughton, J., undHarrington, D. W.,Sewage Fungus: Studies of Sphaerotilus Slimes Using Laboratory Recirculation Channels, Water Research,5, 267–279 (Pergamon Press, London 1971).Google Scholar
  2. [2]
    Eichenberger, E.,Ökologische Untersuchungen an Modellfliessgewässern. I. Die jahreszeitliche Verteilung der bestandesbildenden pflanzlichen Organismen bei verschiedener Abwasserbelastung, Schweiz. Z. Hydrol.29, 1–31 (1967).Google Scholar
  3. [3]
    Eichenberger, E.,Ökologische Untersuchungen an Modellfliessgewässern. II. Jahreszeitliche Veränderungen der Biomassebildung bei verschiedenen Abwasserbelastungen, Schweiz. Z. Hydrol.29, 32–52 (1967).Google Scholar
  4. [4]
    Eichenberger, E.,Ökologische Untersuchungen an Modellfliessgewässern. III. Die jahreszeitlichen Veränderungen im Verhältnis von heterotropher zu phototropher Biomasse bei verschiedenen Abwasserbelastungen, Schweiz. Z. Hydrol.34, 155–172 (1972).Google Scholar
  5. [5]
    Ellenberg, H.,Vegetation Mitteleuropas mit den Alpen in kausaler, dynamischer und historischer Sicht (Ulmer, Stuttgart 1963).Google Scholar
  6. [6]
    Gräf, W., undBickel, H.,Antibiotische Beziehungen zwischen Algen und Bakterien, Archiv Hyg. Bakt.144, 421–429 (1960).Google Scholar
  7. [7]
    Hynes, H. B. N.,The Ecology of Running Waters (Liverpool University Press 1970).Google Scholar
  8. [8]
    Kerr, P. C., Paris, D. F., undBrockway, D. I.,The Interrelation of Carbon and Phosphorus in Regulating Heterotrophic and Autotrophic Populations in Aquatic Ecosystems, U. S. Dept. Interior, Fed. Wat. Qual. Admin., Southeast Water Laboratory, Athens, Georgia (1970).Google Scholar
  9. [9]
    Kuentzel, L. E.,Bacteria, Carbon Dioxide, and Algal Blooms, J. Water Poll. Contr. Fed.41, 1737–1747 (1969).Google Scholar
  10. [10]
    Lange, W.,Enhancement of Algal Growth in Cyanophyta-bacteria Systems by Carbonaceous Compounds, Can. J. Microbiol.17, 303–314 (1971).PubMedCrossRefGoogle Scholar
  11. [11]
    Lefèvre, M.,Auto- et hétéroantagonisme chez les algues d'eau douce, Ann. stat. centr. Hydrobiol. appl.4, 5–198 (1952).Google Scholar
  12. [12]
    McIntire, D. C.,Structural Characteristics of Benthic Algal Communities in Laboratory Streams, Ecology49, 520–537 (1968).CrossRefGoogle Scholar
  13. [13]
    Pankow, H.,Über die Ursachen des Fehlens von Epiphyten auf Zygnemalen, Arch. Protistenk.105, 417–444 (1961).Google Scholar
  14. [14]
    Pointer, H. A., undViney, M.,Composition of Domestic Sewage J. biochem. microbiol. Technol. Engng.1, 143–162 (1959).CrossRefGoogle Scholar
  15. [15]
    Proctor, V. W.,Studies of Algal Antibiotics Using Haematococcus and Chlamydomonas, Limnol. Oceanogr.2, 125–139 (1957).Google Scholar
  16. [16]
    Rice, T. R.,Biotic Influence Affecting Population Growth of Plankton Algae, Fish. Bull. US. Nr.87, 227–245 (1954).Google Scholar
  17. [17]
    Schwarz, D.,Der Einfluss von Wirkstoffen auf das Wachstum und die Vermehrung von Algen (Literaturübersicht), Veröff. Hydrobiol. Forschungsabt. Dortmunder Stadtwerke8, 206 (1965).Google Scholar
  18. [18]
    Whitton, B. A.,Biology of Cladophora in Freshwaters, Water Research4, 457–476 (1970).CrossRefGoogle Scholar
  19. [19]
    Wuhrmann, K.,River Bacteriology and the Role of Bacteria in Self-purification of Rivers, in:Principles and Application in Aquatic Microbiology, S. 167–192 (Ed. Heukelekian and Dondero, J. Wiley, New York 1964).Google Scholar
  20. [20]
    Wuhrmann, K.,Stream Purification, in:Water Pollution Microbiology (Ed. R. Michell, J. Wiley, New York 1972).Google Scholar
  21. [21]
    Wuhrmann, K., Ruchti, J., undEichenberger, E.,Quantitative Experiments on Self-purification with Pure Organic Compounds, Third Int. Conf. Wat. Poll. Res. (1966).Google Scholar
  22. [22]
    Wuhrmann, K., Eichenberger, E., Krähenbühl, H. R., undRuchti, J.,Modelluntersuchungen über die Selbstreinigung in Fliessgewässern, Verh. Internat. Verein. Limnol.16, 897–905 (1968).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1973

Authors and Affiliations

  • E. Eichenberger
    • 1
  1. 1.Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG) an der ETHZDübendorf

Personalised recommendations