Schweizerische Zeitschrift für Hydrologie

, Volume 44, Issue 1, pp 99–116 | Cite as

The influence of natural organic matter on the adsorption properties of mineral particles in lake water

  • Peter Baccini
  • Erwin Grieder
  • Ruth Stierli
  • Sabine Goldberg


The adsorption characteristics of sediment particles from a prealpine Swiss lake were compared with those of γ-aluminum oxide. Under lake water conditions, i.e. with particle concentration of 2–16 mg/1 and DOC concentrations of 1–4 mg/1 at pH=8, the adsorption of copper, zinc and orthophosphate is reduced significantly by the presence of natural organic matter (NOM). It is postulated that the binding sites of the natural mineral surfaces are occupied almost completely by NOM under natural conditions. A simple ligand exchange model can explain the observed phenomena.


Salicylic Acid Lake Water Particle Concentration Surface Concentration Dissolve Organic Carbon Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baccini, P.: Untersuchungen über den Schwermetallhaushalt in Seen. Schweiz. Z. Hydrol.38, 121–158 (1976).CrossRefGoogle Scholar
  2. 2.
    Baccini, P., and Suter, U.: Chemical speciation and biological availability of copper in lake water. Schweiz. Z. Hydrol.41, (2), 291–314 (1979).Google Scholar
  3. 3.
    Baccini, P., and Joller, Th.: Transport processes of copper and zinc in a highly eutrophic and meromictic lake. Schweiz. Z. Hydrol.43, 176–199 (1981).Google Scholar
  4. 4.
    Buffle, J., and Deladoey, P.: Analysis and characterization of natural organic matters in freshwaters. Part II: Comparison of the properties of waters of various origins and their annual trend. Schweiz. Z. Hydrol. (1982, submitted).Google Scholar
  5. 5.
    Davis, J.A.: Adsorption of natural organic matter from freshwater environments by aluminium oxide. In: Baker, R.A. (ed.): Contaminants and Sediments, vol. 2. Ann Arbor, MI (1980).Google Scholar
  6. 6.
    Gloor, R., Leidner, H., Wuhrmann, K., and Fleischmann, Th.: Exclusion chromatography with carbon detection. A tool for further characterization of dissolved organic carbon. Water Res.15, 457–462 (1981).CrossRefGoogle Scholar
  7. 7.
    Hohl, H., and Stumm, W.: Interaction of Pb2+ with hydrous γ-Al2O3. J. Colloid Interface Sci.55 (2), 281–288 (1976).CrossRefGoogle Scholar
  8. 8.
    Krummenacher, T.: Die Nährstoffbilanz des Alpnachersees. Diss. ETH, Nr. 5689 (1976).Google Scholar
  9. 9.
    Kummert, R.: Die Oberflächenkomplexbildung von organischen Säuren mit γ-Alox und ihre Bedeutung für natürliche Gewässer. Diss. ETH, Nr. 6371 (1979).Google Scholar
  10. 10.
    Kummert, R., and Stumm, W.: The surface complexation of organic acids on hydrous γ-Al2O3. J. Colloid Interface Sci.75 (2), 373–385 (1980).CrossRefGoogle Scholar
  11. 11.
    Schindler, P.W.: The regulations of trace metal concentrations in natural water systems: a chemical approach. J. Great Lakes Res.2, suppl. 1 (1976).Google Scholar
  12. 12.
    Sigg, L., and Stumm, W.: The interaction of anions and weak acids with the hydrous goethite (a-FeOOH) surface. Colloids and Surfaces2, 101–117 (1980).CrossRefGoogle Scholar
  13. 13.
    Stumm, W., and Morgan, J.: Aquatic Chemistry, 2nd ed. John Wiley, N. Y. (1981).Google Scholar
  14. 14.
    Theng, B.K.G.: The chemistry of clay-organic reactions Wiley, N.Y. (1974).Google Scholar
  15. 15.
    Thurman, E.M., Wershaw, R.L., Malcolm, R.L., and Pinckney, D.J.: Molecular size of aquatic humic substances. Accepted for Organic Geochemistry (1982a).Google Scholar
  16. 16.
    Thurman, E.M.: Personal communication (1982b).Google Scholar
  17. 17.
    Tipping, E.: The adsorption of aquatic humic substances by iron oxides. Geochim. cosmochim. Acta45, 191–199 (1981).CrossRefGoogle Scholar
  18. 18.
    Vogler, P.: Beiträge zur Phosphatanalytik in der Limnologie. II. Die Bestimmung des gelösten Orthophosphates. Fortschr. Wasserchem. Grenzgeb.2, 109–119 (1965).Google Scholar
  19. 19.
    Westall, J.: MICROQL. I. A Chemical equilibrium program in BASIC. II. Computation of adsorption equilibria in BASIC. Swiss Federal Institute of Technology, CH-8600 Dübendorf (1979).Google Scholar
  20. 20.
    Westall, J.: Chemical equilibrium including adsorption on charged surfaces. In: Kavanaugh, M.C., and Leckie, J.O. (eds): Advances in Chemistry Series, No. 189, ACS (1980).Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Peter Baccini
    • 1
  • Erwin Grieder
    • 1
  • Ruth Stierli
    • 1
  • Sabine Goldberg
    • 2
  1. 1.Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG)KastanienbaumSwitzerland
  2. 2.Department of Soil and Environmental SciencesUniversity of California RiversideCALRiversideUSA

Personalised recommendations