Advertisement

Archives of orthopaedic and traumatic surgery

, Volume 102, Issue 2, pp 73–77 | Cite as

The rise of blood sugar as parameter for the degree of severity of hemorrhagic shock in the rabbit

  • D. Holzrichter
  • A. Burk
  • U. Korn
  • R. Burk
Original Works
  • 19 Downloads

Summary

Besides the known cardiovascular effects of hemorrhagic shock, the following regular metabolic consequences can be demonstrated in rabbits:
  1. 1.

    The rise in blood sugar in hemorrhagic shock increases with the amount of blood withdrawn per unit time.

     
  2. 2.

    The rise in blood sugar is independent of the state of consciousness or Nembutal anesthesia.

     
  3. 3.

    The characteristic rise in blood sugar lasts longer than the partial exsanguination phase.

     

The rise in blood sugar is attributed to an increased glycogenolysis due to a reflex triggering of catecholamine secretion via the baroreceptors in hemorrhagic shock. More attention to metabolic consequences of hemorrhagic shock may possibly give rise to consequences for diagnosis and therapy of shock.

Keywords

Mean Arterial Pressure Hemorrhagic Shock Anesthetize Animal Blood Withdrawal Catecholamine Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Neben bekannten kardio-vaskulären Auswirkungen des hämorrhagischen Schocks lassen sich beim Kaninchen gesetzmäßige metabolische Folgen nachweisen:
  1. 1.

    Der Blutzuckeranstieg im hämorrhagischen Schock nimmt mit der in der Zeiteinheit entnommenen Blutmenge zu.

     
  2. 2.

    Der Blutzuckeranstieg ist unabhängig von der Bewußtseinslage bzw. von einer Nembutal-Narkose.

     
  3. 3.

    Der charakteristische Blutzuckeranstieg überdauert die Phase der Entblutung.

     

Der Blutzuckeranstieg wird auf eine vermehrte Glykogenolyse durch die im hämorrhagischen Schock reflektorisch über die Barorezeptoren ausgelöste Katecholaminsekretion zurückgeführt. Durch Mehrbeachtung metabolischer Folgen des hämorrhagischen Schocks ergeben sich möglicherweise Konsequenzen für die Diagnostik und Therapie des Schocks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahnefeld FW, Burri C (1976) Schock und Schockbehandlung. Chirurg 47:157–163PubMedGoogle Scholar
  2. 2.
    Allgöwer M (1974) Der traumatisch-hämorrhagische Schock. Chirurg 45:103–106PubMedGoogle Scholar
  3. 3.
    Baue AE (1976) Metabolic abnormalities of shock. Symposium on response to infection and injury II, pp 1059–1071Google Scholar
  4. 4.
    Bauer WE, Levene RA, Zachwieja A, Lee MJ, Menczyk Z, Drucker WR (1969) The role of catecholamines in energy metabolism during prolonged hemorrhagic shock. Surg Forum 20:9PubMedGoogle Scholar
  5. 5.
    Bauer WE, Vigas S (1969) Insulin response during hypovolemic shock. Surgery VI:66, pp 80–88Google Scholar
  6. 6.
    Burri C (1978) Zirkulation beim Polytrauma. Unfallheilk 81:443–450Google Scholar
  7. 7.
    Carey C, Cloutier L (1971) Growth hormone and adrenal cortical response to shock and trauma in the human. Ann Surg 1:74Google Scholar
  8. 8.
    Carey LC (1976) Influence of hemorrhage on adrenal secretion, blood glucose and serum-insulin in the awake pig. Ann Surg 2/76:185–192CrossRefGoogle Scholar
  9. 9.
    Chansouria JPN, Singh AK, Udupa KN (1973) Studies on plasma insulin levels in the posttraumatic phase in rabbits. J Trauma 13:12CrossRefGoogle Scholar
  10. 10.
    Cerasi E, Luft R, Effendic S (1971) Antagonism between glucose and epinephrine regarding insulin secretion. Acta Med Scand 190:411–417PubMedCrossRefGoogle Scholar
  11. 11.
    Coran AG, Cryer PE, Horwitz DL, Herman CM (1972) The metabolism of fat and carbohydrate during hemorrhagic shock in the unanesthetized subhuman primate: changes in serum levels of free fatty acids, total lipids, insulin and glucose. Surgery 71:465–469PubMedGoogle Scholar
  12. 12.
    Drucker WR, Gallei BL, Lau TS (1972) The effect of persisting hypovolemic shock and pancreatic output of insulin. Advanc Exp Med Biol 33:187–198Google Scholar
  13. 13.
    Garcia-Barreno O, Balibrea JL (1978) Metabolic response in shock. Surg Gyn Obstet 146:182–190Google Scholar
  14. 14.
    Green HN (1949) The effect of trauma on the chemical compositions of the blood and tissues of man. Clinical Scand Shaw & Sons Ltd. LondonGoogle Scholar
  15. 15.
    Heberer G, Köle W (1977) Chirurgie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Hiebert JJ, Celik Z, Soeldner JS, Egdahl RH (1973) Insulin response to hemorrhagic shock in the intact and adrenalextomized primate. Am J Surg 125Google Scholar
  17. 17.
    Howard JM (1955) Studies of the absorption and metabolism of glucose following injury. Ann Surg 321–326Google Scholar
  18. 18.
    Jäättelä A (1972) Effect of traumatic, shock on plasma catecholamine levels in man. Ann Clin Res 4:204–212PubMedGoogle Scholar
  19. 19.
    Jäättelä A, Alho A, Avikainen V, Karharju E, Kataja J, La Densuu M, Lepistö P, Rokkanen P, Tervo T (1975) Plasma catecholamines in severely injured patients. A prospektive study on 45 patients with multiple injuries. Br J Surg 62:177–181PubMedGoogle Scholar
  20. 20.
    Jesch F, Messmer K (1976) Der hämorrhagische Schock — theoretische Grundlagen. Notfallmedizin 2:302–304Google Scholar
  21. 21.
    Johnston IDA (1972) The endocrine response to trauma. Adv Clin Chem 15:25Google Scholar
  22. 22.
    Jordan GL, Edward E, Fischer P, Lefrak EA (1972) Glucose metabolism in traumatic shock in human. Ann Surg 175:685–692PubMedGoogle Scholar
  23. 23.
    Kaneto A (1977) Effect of alpha adrenoreceptor stimulants infused intrapancreatically and glucagon and insulin secretion. Horm Metab Res 9:267–271PubMedGoogle Scholar
  24. 24.
    Kinney NM, Durdrick StJ (1970) Trauma workshop report: metabolic response to trauma and nutrition. J Trauma 10:11Google Scholar
  25. 25.
    Lau TS, McMillan N, Cherrington A, Drucker WR, Koven IH (1973) Insulin metabolism in depancreatized dogs during hemorrhagic shock. Surg Dorum 24:94–96Google Scholar
  26. 26.
    Lerner RL, Porte D (1971) Epinephrin: selective inhibition of the acute insulin response to glucose. J Clin Invest 50:1453–1457CrossRefGoogle Scholar
  27. 27.
    Manger HM, Bollmann JL, Maher FT, Berkson J (1957) Plasma concentration of epinephrine and norepinephrine in a hemorrhagic and anaphylactic shock. Ann J Physiol 1900:310–316Google Scholar
  28. 28.
    Meguid MM, Moore MC, Fitzpatrick G, Morre FD (1975) Norepinephrine-induced insulin and substrate changes in normal man: incomplete reserval by phentolamine. J Surg Res 18:365–369PubMedCrossRefGoogle Scholar
  29. 29.
    Moss GS, Cerchio GM, Siegel DC, Popovich PA, Butler R (1970) Serum insulin response in hemorrhagic shock in baboons. Surgery 63:34–39Google Scholar
  30. 30.
    Porte D (1969) Sympathetic regulation of insulin secretion. Arch Intern Med 123:262–260CrossRefGoogle Scholar
  31. 31.
    Porte D, Robertson RP (1973) Control of insulin secretion by catecholamine, stress and the sympathetic nervous system. Federat Proc 32:1792–1796Google Scholar
  32. 32.
    Robertson RP, Porte D (1973) Adrenergic modulation of basal insulin secretion in man. Diabetes 22:1–8PubMedGoogle Scholar
  33. 33.
    Russel RCG, Pardy BJ, Carruthers ME, Bloom SR (1977) Plasma glucagon levels in hemorrhagic shock. Br J Surg 64:285–289PubMedGoogle Scholar
  34. 34.
    Sailer FX (1960) Vergleichende Untersuchungen bei Entblutungs-, Verbrennungs- und traumatischem Schock. Habilitationsschrift, GießenGoogle Scholar
  35. 35.
    Schultis G, Sailer FX, Papastavrou N (1971) Zum Postaggressionsstoffwechsel, eine klinische und tierexperimentelle Studie. In: Lasch H, Huth K, Neuhoff H (Hrsg) Blutgerinnung-Kreislauf-Stoffwechsel. Schattauer, Stuttgart New York, S 263–277Google Scholar
  36. 36.
    Sefrin P (1977) Klinische Untersuchungen biochemischer und hormoneller Veränderungen in Abhängigkeit vom Schweregrad der Traumatisation. Habilitationsschrift Universität WürzburgGoogle Scholar
  37. 37.
    Sefrin P (1979) Stoffwechselveränderungen und Blutgerinnung bei polytraumatisierten Verletzten in der Frühphase des traumatisch-hämorrhagischen Schocks. Vortrag a. d. Int. Symposium über Schock und seine Behandlung, Mainz, 9./10.3.1979Google Scholar
  38. 38.
    Shu C, Dellebock RJ, Shunicki, Burton DA, Gustavson PF, Magrinovic V (1973) Blood volume, hemodynamic and metabolic changes in hemorrhagic shock in normal splenectomized dogs. Ann J Physiol 225:866–879Google Scholar
  39. 39.
    Stoner HB, Heath DF (1973) The effect of trauma on carbohydrate metabolism. Br J Anaesth 45:244–251PubMedGoogle Scholar
  40. 40.
    Teppermann J (1971) Physiologie des Stoffwechsels und des Endokriniums. Schattauer, Stuttgart New YorkGoogle Scholar
  41. 41.
    Zierott G (1971) Die Bedeutung der adrenergen Blockade für den hämorrhagischen Schock. Anästhesie und Wiederbelebung, Bd. 52. Springer, Berlin Heidelberg New YorkGoogle Scholar
  42. 42.
    Zileli MS, Gedik O, Adaler N, Cäglar S (1974) Adrenal medullary response to removal of various amounts of blood. Endo 95:1477–1481Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • D. Holzrichter
    • 1
  • A. Burk
    • 1
  • U. Korn
    • 2
  • R. Burk
    • 1
  1. 1.Department of Accident SurgeryUniversity HospitalHamburg 20Germany
  2. 2.Department of Orthopedic SurgeryUniversity HospitalHamburg 20Germany

Personalised recommendations