Skip to main content
Log in

Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene ofDrosophila melanogaster

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

TheD. melanogaster clock geneperiod (per) is an internally repetitive gene encoding a tandem array of Thr-Gly codons that are highly polymorphic in length in European natural populations. The two major length variants, (Thr-Gly)20 and (Thr-Gly)17, show a highly significant latitudinal cline. In this study we present the complete sequence of the Thr-Gly region of 91 individuals from 6 natural populations ofD. melanogaster, 5 from Europe and 1 from North Africa. We further characterized these 91 individuals for polymorphic sites in two other regions, one upstream and one downstream of the Thr-Gly repeat. We used the haplotypic combinations of Thr-Gly allele with flanking markers in an attempt to identify the mechanisms involved in the evolution of theD. melanogaster Thr-Gly region and to infer the phylogenetic relationship existing among the Thr-Gly alleles. We observe evidence for both intra- and interallelic mutational mechanisms, including replication slippage, unequal crossing-over, and gene conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson PR, Oakeshott JG (1984) Parallel geographical patterns of allozyme variation in two siblingDrosophila species. Nature 308:729–731

    Article  Google Scholar 

  • Andersson S, Lambertsson A (1993) Evolution of thedec-1 eggshell locus inDrosophila. II. Intraspecific DNA sequence analysis reveals length mutations in a repetitive region inD. melanogaster. J Mol Evol 36:536–544

    Article  PubMed  CAS  Google Scholar 

  • Aquadro CF (1992) Why is the genome variable? Insights fromDrosophila. Trends Genet 8:355–362

    PubMed  CAS  Google Scholar 

  • Aquadro CF (1993) Molecular population genetics ofDrosophila. In: Oakeshott J, Whitten MJ (eds) Molecular approaches to fundamental and applied entomology. Springer Verlag, Berlin, pp 222–226

    Google Scholar 

  • Aronson BD, Johnson KA, Dunlap JC (1994) Circadian clock locusfrequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci USA 91:7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Berry A, Kreitman M (1993) Molecular analysis of an allozyme cline:Alcohol dehydrogenase inDrosophila melanogaster on the east coast of North America. Genetics 134:869–893

    PubMed  CAS  Google Scholar 

  • Burbach KM, Poland A, Bradfield CA (1992) Cloning of the Ahreceptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA 89:8185–8189

    Article  PubMed  CAS  Google Scholar 

  • Castiglione-Morelli MA, Guantieri V, Villani V, Kyriacou CP, Costa R, Tamburro AM (1995) Conformational study of the Thr-Gly repeat in theDrosophila clock protein period. Proc R Soc Lond [Biol] 260:155–163

    CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephen W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Citri Y, Colot HV, Jacquier AC, Yu Q, Hall JC, Baltimore D, Rosbash M (1987) A family of unusually spliced biologically active transcripts encoded by aDrosophila clock gene. Nature 326:42–47

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Peixoto AA, Thackeray JR, Dalgleish R, Kyriacou CP (1991) Length polymorphism in the Threonine-Glycine encoding repeat region of theperiod gene inDrosophila. J Mol Evol 32:238–246

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Peixoto AA, Barbujani G, Kyriacou CP (1992) A latitudinal cline in aDrosophila clock gene. Proc R Soc Lond Biol 250:43–49

    CAS  Google Scholar 

  • David JR, Bocquet C (1975) Similarities and differences in latitudinal adaptation of twoDrosophila sibling species. Nature 257:588–590

    Article  PubMed  CAS  Google Scholar 

  • David JR, Capy P (1988) Genetic variation ofDrosophila melanogaster natural populations. Trends Genet 4:106–111

    Article  PubMed  CAS  Google Scholar 

  • Djian P, Phillips M, Easley K, Huang E, Simon M, Rice RH, Green H (1993) The involucrin genes of the mouse and the rat: study of their shared repeats. Mol Biol Evol 10:1136–1149

    PubMed  CAS  Google Scholar 

  • Dover GA (1982) Molecular drive: cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  CAS  Google Scholar 

  • Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165

    Article  CAS  Google Scholar 

  • Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Dover GA (1989) Slips, strings and species. Trends Genet 5:100–103

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Burke WD (1986) The silkmoth late chorion locus II. Gradients of gene conversion in two paired multigene families. J Mol Biol 190:357–366

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Hamblen-Coyle M, Rosbash M, Hall JC (1990) Requirement forperiod gene expression in the adult and not during development for locomotor activity rhythms of imaginalDrosophila melanogaster. J Neurogenet 7:31–73

    PubMed  CAS  Google Scholar 

  • Gloor G, Engels W (1990) Single-fly DNA preps for PCR.Drosophila Information Newsletter vol 1, January 1990

  • Goodbourn SEY, Higgs DR, Clegg JB, Weatherall DJ (1983) Molecular basis of length polymorphism in the human ζ-globin complex. Proc Natl Acad Sci USA 80:5022–5026

    Article  PubMed  CAS  Google Scholar 

  • Green H, Djian P (1992) Consecutive actions of different gene-altering mechanisms in the evolution of involucrin. Mol Biol Evol 9:977–1017

    PubMed  CAS  Google Scholar 

  • Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: recombination rules. Genetics 132:847–859

    PubMed  CAS  Google Scholar 

  • Hickey DA (1982) Selfish DNA. A sexually-transmitted nuclear parasite. Genetics 101:519–531

    PubMed  CAS  Google Scholar 

  • Hilliker AJ, Harauz G, Reaume AG, Gray M, Clark SH, Chovnick A (1994) Meiotic gene conversion tract length distribution within therosy locus ofDrosophila melanogaster. Genetics 137:1019–1026

    PubMed  CAS  Google Scholar 

  • Hoffman EC, Reyes H, Chu F-F, Sander F, Conley LH, Brooks BA Hankinson O (1991) Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–958

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Parsons PA (1993) Direct and correlated responses to selection for desiccation resistance: a comparison ofD. melanogaster andD. simulans. J Evol Biol 6:643–657

    Article  Google Scholar 

  • Housman D (1995) Gain of glutamines, gain of function? Nature Genet 10:3–4

    Article  PubMed  CAS  Google Scholar 

  • Howard J (1995) Not all converted yet. Nat Genet 10:371–373

    Article  PubMed  CAS  Google Scholar 

  • Huang JH, Edery L, Rosbash M (1993) PAS is a dimerization domain common toDrosophila period and several transcriptional factors. Nature 364:359–362

    Article  Google Scholar 

  • Huang ZJ, Curtin KD, Rosbash M (1995)period protein intra- and inter-molecular interactions contribute to temperature compensation of a circadian clock inDrosophila. Neuron 14:365–372

    Article  PubMed  Google Scholar 

  • Jackson FR, Bargiello TA, Yun S-H, Young MW (1986) Product of theper locus ofDrosophila shares homology with proteoglycans. Nature 320:185–188

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988a) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332:278–281

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988b) Amplification of human minisatellites by polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16:10953–10971

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R, Wilson V (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60:473–485

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Monckton DG, Tamaki K, Neil DL, Armour JAL, MacLeod A, Collick A, Allen M, Jobling M (1993) Minisatellite variant mapping: application to DNA typing and mutation analysis. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (eds) DNA fingerprinting: state of the science. Birkhauser Verlag, Basel, pp 125–139

    Google Scholar 

  • Jeffreys AJ, Tamaki K, McLeod A, Monckton DG, Neil DL, Armour JAL (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136–145

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants ofDrosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M (1991) Detecting selection at the level of DNA. In: Selander RK, Clarck AG, Whittam TS (eds) Evolution at the molecular level. Sinauer, Sunderland, MA, pp 204–221

    Google Scholar 

  • Kyriacou CP, Hall JC (1986) Interspecific genetic control of courtship song production and reception inDrosophila. Science 232:494–497

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Matsui M, Mitsui Y, Ishida N (1994) Circadian regulation ofper repeat mRNA in the suprachiasmatic nucleus of rat brain. Neurosci Lett 163:189–192

    Article  Google Scholar 

  • McClung CR, Fox BA, Dunlap JC (1989)frequency, a clock gene inNeurospora shares a sequence element with theDrosophila clock geneperiod. Nature 339:558–562

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Yaguchi S, Tsurugi K (1994) TheGTS1 gene, which contains a Gly-Thr repeat, affects the timing of budding and cell size of the yeastSaccharomyces cerevisiae. Mol Cell Biol 14:5569–5578

    PubMed  CAS  Google Scholar 

  • Muskavitch MAT, Hogness DS (1982) An expandable gene that encodes aDrosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Nambu JR, Lewis JO, Wharton KA Crews ST (1991) TheDrosophila single minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Peixoto AA, Piccin A, Costa R, Kyriacou CP, Chalmers D (1994) Big flies, small repeats: the “Thr-Gly” region of theperiod gene inDiptera. Mol Biol Evol 11:839–853

    PubMed  CAS  Google Scholar 

  • Peixoto A (1993) Molecular evolution of a repetitive region within a clock gene inDrosophila. Ph D thesis

  • Peixoto AA, Campesan S, Costa R, Kyriacou CP (1993) Molecular evolution of a repetitive region within theper gene ofDrosophila. Mol Biol Evol 10:127–139

    PubMed  CAS  Google Scholar 

  • Peixoto AA, Costa R, Wheeler DA, Hall JC, Kyriacou CP (1992) Evolution of the Threonine-Glycine repeat region of theperiod gene in themelanogaster species subgroup ofDrosophila. J Mol Evol 35:711–719

    Article  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad USA 991:5355–5338

    Article  Google Scholar 

  • Richards RI, Sutherland GR (1992) Dynamic mutations: a new class of mutations causing human disease. Cell 70:709–712

    Article  PubMed  CAS  Google Scholar 

  • Rosato E, Peixoto AA, Barbujani G, Costa R, Kyriacou CP (1994) Molecular polymorphism in theperiod gene ofDrosophila simulans. Genetics 138:693–707

    PubMed  CAS  Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276

    Article  PubMed  CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for DNA markers. Nucleic Acid Res 17:6463–6471

    PubMed  CAS  Google Scholar 

  • Wheeler DA, Kyriacou CP, Greenacre M, Yu Q, Rutila J, Rosbash M, Hall JC (1991) Molecular transfer of a species-specific courtship behaviour fromDrosophila simulans toDrosophila melanogaster. Science 251:1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Colot HV, Kyriacou CP, Hall JC, Rosbash M (1987) Behaviour modification by in vitro mutagenesis of a variable region within theperiod gene ofDrosophila. Nature 326:765–769

    Article  PubMed  CAS  Google Scholar 

  • Zangenberg G, Huang M, Arnheim N, Erlich H (1995) New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Nat Genet 10:407–414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosato, E., Peixoto, A.A., Gallippi, A. et al. Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene ofDrosophila melanogaster . J Mol Evol 42, 392–408 (1996). https://doi.org/10.1007/BF02498633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498633

Key words

Navigation