Russian Chemical Bulletin

, Volume 48, Issue 12, pp 2200–2210 | Cite as

The influence of universal and specific interactions on structural properties of liquid formamide

  • Yu. G. Bushuev
  • S. V. Davletbaeva
  • V. P. Korolev
Physical Chemistry


Monte Carlo simulation of the structure of liquid formamide at 298 K was carried out. Intermolecular interactions were calculated using five different potentials. No essential changes in the spatial structure and topological properties of the network of hydrogen bonds of liquid formamide occur upon varying the electrostatic intermolecular interactions, strength of H-bonds, and temperature. Fragments of crystal structure are partly retained in liquid formamide. It was found that the network of H-bonds is structurally inhomogeneous and contains long-lived associates of closed cycles of H-bonds as well as tree-like and chain-like structures. The energy, topological, and statistical characteristics of closed cycles of H-bonds were determined.

Key words

organic solvents formamide structure of liquid intermolecular interactions hydrogen bonds computer simulation of liquids Monte Carlo method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ladell and B. Post,Acta Crystallogr., 1954,7, 559.CrossRefGoogle Scholar
  2. 2.
    H. Ohtaki, A. Funaki, B. M. Rode, and G. J. Reibnegger,Bull. Chem. Soc. Jpn., 1983,56, 2116.CrossRefGoogle Scholar
  3. 3.
    S. Suhai,J. Phys. Chem., 1996,100, 3950.CrossRefGoogle Scholar
  4. 4.
    J. Florian and B. J. Johnson,J. Phys. Chem., 1995,99, 5899.CrossRefGoogle Scholar
  5. 5.
    B. Ya. Simkin and I. I. Sheikhet,Kvantovo-khimicheskaya i statisticheskaya teoriya rastvorov. Vychislitel'nye metody i ikh primenenie [Quantum-Chemical and Statistical Theory of Solutions Computational Methods and Their Application], Khimiya, Moscow, 1989, 256 pp. (in Russian).Google Scholar
  6. 6.
    W. L. Jorgensen and C. J. Swenson,J. Am. Chem. Soc., 1985,107, 569.CrossRefGoogle Scholar
  7. 7.
    K. Sagarik and R. Ahlrichs,J. Chem. Phys., 1987,86, 5117.CrossRefGoogle Scholar
  8. 8.
    J. Gao, J. Pavelites, and D. Habibollazadeh,J. Phys. Chem., 1996,100, 2689.CrossRefGoogle Scholar
  9. 9.
    Yu. G. Bushuev and T. A. Dubinkina,Zh. Fiz. Khim., 1996,70, 1628 [Russ. J. Phys. Chem., 1996,70, 1512 (Engl. Transl.)].Google Scholar
  10. 10.
    Yu. G. Bushuev and S. V. Davletbaeva,Izv. Akad. Nauk, Ser. Khim., 1999, 25, [Russ. Chem. Bull., 1999,48, 25 (Engl. Transl.)].Google Scholar
  11. 11.
    Yu. G. Bushuev and A. M. Zaichikov,Izv. Akad. Nauk, Ser. Khim., 1998, 21 [Russ. Chem. Bull., 1998,47, 17 (Engl. Transl.)].Google Scholar
  12. 12.
    F. J. Wiesmann, M. D. Zeidler, H. Bertagnolli, and P. Chieux,Mol. Phys., 1986,57, 275.CrossRefGoogle Scholar
  13. 13.
    A. K. Dorosh,Struktura kondensirovannykh sistem [The Structure of Condensed Systems], Vishcha Shkola, L'vov, 1981, 176 pp. (in Russian).Google Scholar
  14. 14.
    O. F. Nelson, P. A. Lund, and E. Praestgaard,J. Chem. Phys., 1982,77, 3878.CrossRefGoogle Scholar
  15. 15.
    M. Hippler and H. G. Hertz,Z. Phys. Chem., 1992,175, 25.Google Scholar
  16. 16.
    Yu. P. Puhovski and B. M. Rode,Chem. Phys., 1995,190, 61.CrossRefGoogle Scholar
  17. 17.
    Yu. G. Bushuev and A. M. Zaichikov,Izv. Akad. Nauk, Ser. Khim., 1998, 1911 [Russ. Chem. Bull., 1998,47, 1857 (Engl. Transl.)].Google Scholar
  18. 18.
    R. Ludwig, F. Weinhold, and T. C. Farrar,J. Chem. Phys., 1995,102, 118.CrossRefGoogle Scholar
  19. 19.
    J. W. Essex and W. L. Jorgensen,J. Phys. Chem., 1995,99, 17956.CrossRefGoogle Scholar
  20. 20.
    C. A. Croxton,Liquid State Physics—A statistical Mechanical Introduction, Cambridge University Press, 1974.Google Scholar
  21. 21.
    A. N. Tikhonov and V. Ya. Arsenin,Metody resheniya nekorrektnykh zadach [Methods of Solution of Incorrect Problems], Nauka, Moscow, 1986, 288 pp. (in Russian).Google Scholar
  22. 22.
    A. F. Skryshevskii,Strukturnyi analiz zhidkostei i amorfnykh tel [Structural Analysis of Liquids and Amorphous Solids], Vysshaya Shkola, Moscow, 1980, 328 pp. (in Russian).Google Scholar
  23. 23.
    E. Kalman and G. Palinkas, inThe Chemical Physics of Solvation. Pt. B: Spectroscopy of Solvation, Elsevier, Amsterdam, 1986,38, 501.Google Scholar
  24. 24.
    A. K. Soper,J. Chem. Phys., 1994,101, 6888.CrossRefGoogle Scholar
  25. 25.
    International Tables for Crystallography, Kynoch Press, Birmingham, 1968,3; 1974,4.Google Scholar
  26. 26.
    Yu. G. Bushuev and T. A. Dubinkina,Zh. Fiz. Khim., 1996,70, 1980 [Russ. J. Phys. Chem., 1996,70, 1825 (Engl. Transl.)].Google Scholar
  27. 27.
    J. Kolafa and I. Nezbeda,Mol. Phys., 1995,84, 421.CrossRefGoogle Scholar
  28. 28.
    V. S. Dunyashev, Yu. G. Bushuev, and A. K. Lyashchenko,Zh. Fiz. Khim., 1996,70, 422 [Russ. J. Phys. Chem., 1996,70, 385 (Engl. Transl.)].Google Scholar
  29. 29.
    Yu. G. Bushuev and A. K. Lyashchenko,Zh. Fiz. Khim., 1996,70, 416 [Russ. J. Phys. Chem., 1996,70, 380 (Engl. Transl.)].Google Scholar
  30. 30.
    Yu. G. Bushuev,Izv. Akad. Nauk, Ser. Khim., 1996, 928 [Russ. Chem. Bull., 1997,46, 888 (Engl. Transl.)].Google Scholar
  31. 31.
    J. D. Bernal and S. V. King, inPhysics of Simple Liquids, Eds. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, North-Holland, Amsterdam, 1968.Google Scholar
  32. 32.
    S. I. Kuchanov, S. V. Korolev, and S. V. Panyukov, inPrimenenie teorii grafov v khimii [Applications of Graph Theory in Chemistry], Nauka, Novosibirsk, 1988, 144 (in Russian).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Yu. G. Bushuev
    • 1
  • S. V. Davletbaeva
    • 2
  • V. P. Korolev
    • 2
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussian Federation
  2. 2.Institute of Solutions ChemistryRussian Academy of SciencesIvanovoRussian Federation

Personalised recommendations