Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alt, H.W., Caffarelli, L.A., and Friedman, A. (1984). Variational problems with two phases and their free boundaries.Trans. Amer. Math. Soc.,282(2), 431–461.

    Article  MATH  MathSciNet  Google Scholar 

  2. Athanasopoulos, O. and Caffarelli, L.A. (1985). A theorem of real analysis and its application to free boundary problems.Comm. Pure Appl. Math.,38(5), 499–502.

    MathSciNet  Google Scholar 

  3. Caffarelli, L.A. (1977). The regularity of free boundaries in higher dimensions.Acta Math.,139(3–4), 155–184.

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A. (1980). Compactness methods in free boundary problems.Comm. Partial Differential Equations,5(4), 427–448.

    MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A. (1981). A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets.Boll. Un. Mat. Ital., A (5)18(1), 109–113.

    MATH  MathSciNet  Google Scholar 

  6. Caffarelli, L.A. and Kinderlehrer, D. (1980). Potential methods in variational inequalities.J. Analyse Math.,37, 285–295.

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Fabes, E., Mortola, S., and Salsa, S. (1981). Boundary behavior of nonnegative solutions of elliptic operators in divergence form.Indiana Univ. Math. J.,30(4), 621–640.

    Article  MATH  MathSciNet  Google Scholar 

  8. Frehse, J. (1972). On the regularity of solutions of a second order variational inequality.Boll. Un. Mat. Ital.,6(4).

  9. Friedman, A. (1982).Variational Principles and Free Boundary Problems. Wiley, New York.

    MATH  Google Scholar 

  10. Jerison, D. and Kenig, C. (1982). Boundary behaviour of harmonic functions in nontangentially accessible domains.Adv. in Math.,46(1), 80–147.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgements and Notes. Partially supported by NSF Grant # DMS 9101234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarelli, L.A. The obstacle problem revisited. The Journal of Fourier Analysis and Applications 4, 383–402 (1998). https://doi.org/10.1007/BF02498216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498216

Keywords

Navigation