The obstacle problem revisited

  • L. A. Caffarelli
Article

Keywords

Singular Point Harmonic Function Free Boundary Global Solution Free Boundary Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alt, H.W., Caffarelli, L.A., and Friedman, A. (1984). Variational problems with two phases and their free boundaries.Trans. Amer. Math. Soc.,282(2), 431–461.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Athanasopoulos, O. and Caffarelli, L.A. (1985). A theorem of real analysis and its application to free boundary problems.Comm. Pure Appl. Math.,38(5), 499–502.MathSciNetGoogle Scholar
  3. [3]
    Caffarelli, L.A. (1977). The regularity of free boundaries in higher dimensions.Acta Math.,139(3–4), 155–184.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Caffarelli, L.A. (1980). Compactness methods in free boundary problems.Comm. Partial Differential Equations,5(4), 427–448.MATHMathSciNetGoogle Scholar
  5. [5]
    Caffarelli, L.A. (1981). A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets.Boll. Un. Mat. Ital., A (5)18(1), 109–113.MATHMathSciNetGoogle Scholar
  6. [6]
    Caffarelli, L.A. and Kinderlehrer, D. (1980). Potential methods in variational inequalities.J. Analyse Math.,37, 285–295.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Caffarelli, L.A., Fabes, E., Mortola, S., and Salsa, S. (1981). Boundary behavior of nonnegative solutions of elliptic operators in divergence form.Indiana Univ. Math. J.,30(4), 621–640.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Frehse, J. (1972). On the regularity of solutions of a second order variational inequality.Boll. Un. Mat. Ital.,6(4).Google Scholar
  9. [9]
    Friedman, A. (1982).Variational Principles and Free Boundary Problems. Wiley, New York.MATHGoogle Scholar
  10. [10]
    Jerison, D. and Kenig, C. (1982). Boundary behaviour of harmonic functions in nontangentially accessible domains.Adv. in Math.,46(1), 80–147.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • L. A. Caffarelli
    • 1
  1. 1.Department of Mathematics and TICAMThe University of Texas at AustinAustin

Personalised recommendations