The obstacle problem revisited

  • L. A. Caffarelli


Singular Point Harmonic Function Free Boundary Global Solution Free Boundary Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alt, H.W., Caffarelli, L.A., and Friedman, A. (1984). Variational problems with two phases and their free boundaries.Trans. Amer. Math. Soc.,282(2), 431–461.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Athanasopoulos, O. and Caffarelli, L.A. (1985). A theorem of real analysis and its application to free boundary problems.Comm. Pure Appl. Math.,38(5), 499–502.MathSciNetGoogle Scholar
  3. [3]
    Caffarelli, L.A. (1977). The regularity of free boundaries in higher dimensions.Acta Math.,139(3–4), 155–184.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Caffarelli, L.A. (1980). Compactness methods in free boundary problems.Comm. Partial Differential Equations,5(4), 427–448.MATHMathSciNetGoogle Scholar
  5. [5]
    Caffarelli, L.A. (1981). A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets.Boll. Un. Mat. Ital., A (5)18(1), 109–113.MATHMathSciNetGoogle Scholar
  6. [6]
    Caffarelli, L.A. and Kinderlehrer, D. (1980). Potential methods in variational inequalities.J. Analyse Math.,37, 285–295.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Caffarelli, L.A., Fabes, E., Mortola, S., and Salsa, S. (1981). Boundary behavior of nonnegative solutions of elliptic operators in divergence form.Indiana Univ. Math. J.,30(4), 621–640.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Frehse, J. (1972). On the regularity of solutions of a second order variational inequality.Boll. Un. Mat. Ital.,6(4).Google Scholar
  9. [9]
    Friedman, A. (1982).Variational Principles and Free Boundary Problems. Wiley, New York.MATHGoogle Scholar
  10. [10]
    Jerison, D. and Kenig, C. (1982). Boundary behaviour of harmonic functions in nontangentially accessible domains.Adv. in Math.,46(1), 80–147.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • L. A. Caffarelli
    • 1
  1. 1.Department of Mathematics and TICAMThe University of Texas at AustinAustin

Personalised recommendations